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Motivating Problem
Let  be a number field.  

Theorem (Mordell-Weil): If  is an elliptic curve over , then  is a finitely generated
abelian group.

Thus  is a finite group. 
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Problem:  Which finite abelian groups  occur, as we vary over all elliptic curves ?

 

Observation:  is a finite subgroup of , so  is cyclic or a product of two
cyclic groups.

 

 

 

       

An Old Conjecture
 

Conjecture (Levi around 1908; re-made by Ogg in 1960s): 

  When , the groups , as we vary over all , are the following 15 groups:

                                for  or 

        for .

 

Note:

This is really a conjecture about rational points on certain curves of (possibly) higher genus
(title of Michael Stoll's talk today)...

1.

Or, it's a conjecture in arithmetic dynamics about periodic points.2.

 

 

       

Modular Curves
The modular curves  and :

Let  be the affine modular curve over  whose points parameterize isomorphism
classes of pairs , where  is a cyclic subgroup of order .
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Let  be ...  of pairs , where  is a point of order .

Let  and  be the compactifications of the above affine curves.

Observation: There is an elliptic curve  with  if and only if  is
nonempty.

Also,  is a quotient of , so if  is empty, then so is . 

 

       

Mazur's Theorem (1970s)
Theorem (Mazur) If  for some elliptic curve , then .

Combined with previous work of Kubert and Ogg, one sees that Mazur's theorem implies Levi's
conjecture, i.e., a complete classification of the finite groups .

Here are representative curves by the way (there are infinitely many for each -invariant):

for ainvs in ([0,-2],[0,8],[0,4],[4,0],[0,-1,-1,0,0],[0,1],
        [1, -1, 1, -3, 3],[7,0,0,16,0], [1,-1,1,-14,29],
        [1,0,0,-45,81], [1, -1, 1, -122, 1721], [-4,0],
        [1,-5,-5,0,0], [5,-3,-6,0,0], [17,-60,-120,0,0]  ):
    E = EllipticCurve(ainvs)
    view((E.torsion_subgroup().invariants(), E)) 

       

Y (N) 1 (E; ) P P (Q) 2 E N  

X (N) 0 X (N) 1

E=K p E(K) j # Y (p)(K) 1

Y (N) 0 Y (N) 1 Y (N)(K) 0 Y (N) 0

p E(Q)  j # tor E=Q p 3 Ô 1

E(Q)  tor
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([] ) ; y2 = x3 À 2
([2] ) ; y2 = x3 + 8
([3] ) ; y2 = x3 + 4
([4] x) ; y2 = x3 + 4
([5] ) ; y2 À y = x3 À x2

([6] ) ; y2 = x3 + 1
([7] y x ) ; y2 + x + y = x3 À x2 À 3 + 3
([8] xy 6x) ; y2 + 7 = x3 + 1
([9] y 4x 9) ; y2 + x + y = x3 À x2 À 1 + 2
([10] y 5x 1) ; y2 + x = x3 À 4 + 8
([12] y 22x 721) ; y2 + x + y = x3 À x2 À 1 + 1
([2; ] x) 2 ; y2 = x3 À 4
([4; ] y y x ) 2 ; y2 + x À 5 = x3 À 5 2

([6; ] xy y x ) 2 ; y2 + 5 À 6 = x3 À 3 2

([8; ] 7xy 20y 0x ) 2 ; y2 + 1 À 1 = x3 À 6 2



 

       

Mazur's Method
Theorem (Mazur) If  for some elliptic curve , then .

Basic idea of the proof:  

Find a rank zero quotient  of  such that...1.
... the induced map  is a formal immersion at infinity (this means that the
induced map on complete local rings is surjective, or equivalently, that the induced map on
cotangent spaces is surjective). 

2.

Then consider the point  corresponding to a pair , where  has order .  3.
If  has potentially good reduction at , get contradiction by injecting -torsion mod  since

, so  has multiplicative reduction, hence we may assume  reduces to the cusp . 
4.

The image of  in  is thus in the kernel of the reduction map mod .     But this kernel of
reduction is a formal group, hence torsion free.  But  is finite, so image of

 is 0. 

5.

Use that  is a formal immersion at infinity along with step 5, to show that , which is a
contradiction since 

6.

Mazur uses for  the Eisenstein quotient of  because he is able to prove -- way back in the
1970s! -- that this quotient has rank  by doing a -descent.   This is long before much was known
toward the BSD conjecture.  More recently one can:

Merel 1995: use the winding quotient of , which is the maximal analytic rank 
quotient.  This makes the arguments easier, and we know by Kolyvagin-Logachev et al. or by
Kato that the winding quotient has rank 0.

Parent 1999: use the winding quotient of , which leads to a similar argument as above.
 This quotient has rank 0 by Kato's theorem.  

/ 

       

Kamienny-Mazur
A prime  is a torsion prime for degree  if there is a number field  of degree  and an elliptic
curve  such that . 

Let .  For example, . 
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Finding all possible torsion structure over all fields of degree  often involves determining ,
then doing some additional work (which we won't go into).  E.g.,

Theorem (Frey, Faltings): If  is finite, then the set of groups , as  varies over all
elliptic curves over all number fields  of degree , is finite. 

Kamienny and Mazur: Replace  by the symmetric power X (p)  and gave an explicit
criterion in terms of independence of Hecke operators for  to be a formal
immersion at .   A point , where  has degree , then defines a
point , etc.

Theorem (Kamienny and Mazur):

,
 is finite for ,
 has density 0 for all .

Corollary (Uniform Boundedness): There is a fixed constant  such that if  is an elliptic
curve over a number field of degree , then .

(Very surprising!)

 

       

Torsion Structures over Quadratic Fields
Theorem (Kenku, Momose, Kamienny, Mazur): The complete list of subgroups that appear over
quadratic fields is:

            Z/mZ            for m<=16 or m=18
           (Z/2Z) x (Z/2vZ) for v<=6.
           (Z/3Z) x (Z/3vZ) for v=1,2
           (Z/4Z) x (Z/4vZ)

and each occurs for infinitely many -invariants.

 

       

What is ?

Kamienny, Mazur: "We expect that , but it would simply be too embarrassing to
parade the actual astronomical finite bound that our proof gives."

Ô  d S(d) 

S(d) E(K)  tor E 
K Ô  d
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(d)
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But soon, Merel in a tour de force, proves (by using the winding quotient and a deep modular
symbols argument about independence of Hecke operators):

Theorem (Merel, 1996):  , for .

thus proving the full Universal Boundedness Conjecture, which is a huge result.

Shortly thereafter Oesterle modifies Merel's argument to get a much better upper bound:

Theorem (Oesterle): .

for d in [1..10]:
    print '%2s%10s    %s'%(d, floor((3^(d/2)+1)^2), d^(3*d^2)) 

       

 1         7    1
 2        16    4096
 3        38    7625597484987
 4       100    79228162514264337593543950336
 5       275   
26469779601696885595885078146238811314105987548828125
 6       784   
10973244131286950950144985197629484442993151704097425695216883638656\
69310779664367616
 7      2281   
16959454617563682698054005840792102521632243876732771232150341713141\
856731878591823809299439924812705151100914349041188035543
 8      6724   
24733040147310453406050252101964719003513134910121183991406305609289\
72251065318671703164010612430449895976714260161393393513650343067512\
09967546155101893167916606772148699136
 9     19964   
76020337568296881795356121019273424347980062229133458820966717184620\
26450847558385638399133044640009857513126790996106341658482736771462\
69252266341608361370939719058347391410024303791987065214304600142120\
7236044960360057945209303129
10     59536   
10000000000000000000000000000000000000000000000000000000000000000000\
00000000000000000000000000000000000000000000000000000000000000000000\
00000000000000000000000000000000000000000000000000000000000000000000\
00000000000000000000000000000000000000000000000000000000000000000000\
00000000000000000000000000000

 

       

Parent's Method: Nailing Down S(3)

By Oesterle, we know that .  

max(S(d))  < d3d
2

d  Õ 2

max(S(d)) 3 )  < ( d=2 + 1 2

max(S(3)) 7 Ô 3



In 1999, Parent made Kamienny's method applied to  explicit and computable, and used this to
bound  explicitly, showing that .   This makes crucial use of Kato's theorem
toward the Birch and Swinnerton-Dyer conjecture!  

In subsequent work, Parent rules out  finally giving the answer:

The list of groups  that occur for  cubic is still unknown.  However, using the notion of
trigonality of modular curves (having a degree 3 map to ), Jeon, Kim, and Schweizer showed that
the groups that appear for infinitely many -invariants are:

    Z/mZ           for m<=16, 18, 20
    Z/2Z x Z/2vZ   for v<=7

 

       

What about Degree 4?

By Oesterle, we know that .

Recently, Jeon, Kim, and Park (2006), again used gonality (and big computations with Singular), to
show that the groups that appear for infinitely many -invariants for curves over quartic fields are:

    Z/mZ           for m<=18, or m=20, m=21, m=22, m=24
    Z/2Z x Z/2vZ   for v<=9
    Z/3Z x Z/3vZ   for v<=3
    Z/4Z x Z/4vZ   for v<=2
    Z/5Z x Z/5Z 
    Z/6Z x Z/6Z

Question (Kamienny to me): Is 

 

       

Explicit Kamienny-Parent for 

To attack the above unsolved problem about , we made Parent's (1999) approach very explicit in
case  and  (he gives a general criterion for any ...).  One arrives that the following
(where  is a certain explicitly computed element of the Hecke algebra):

J (p) 1

S(3) max(S(3)) 7 Ô 1

17 

 S(3) 2; ; ; ; 1; 3g  = f 3 5 7 1 1

E(K)  tor K 
P  1

j 

max(S(4)) 7 Ô 9

j 

S(4) 2; ; ; ; 1; 3; 7g? = f 3 5 7 1 1 1

d  = 4

S(4) 
d  = 4 `  = 2 d 
t 



NOTES:

This looks pretty crazy, but this is really just a way of expressing the condition that a certain
map is a formal immersion. 

1.

As  gets large, there are a LOT of 4-tuples of elements of the Hecke algebra to test for
independence mod 2.

2.

Here is code that implements this algorithm: code.sage3.

 

       

Running the Algorithm
After a few days we find that the criterion is not satisfied for , but it is for

. 

Conclusion:

Theorem (Kamienny, Stein):  . 

It's unclear to me, but Kamienny seems to also have a proof that rules out , which would
nearly answer the big question for degree . 

p 

p 9; 1 = 2 3
37 7 Ô p Ô 9

max(S(4)) 1 Ô 3

29; 1 3
4 



 

       

Future Work
Kamienny (unpublished): "Moreover 29, 31, 41 , and 59 can't occur over any quartic field...
 I've known an easy geometric proof for a long time, but I simply forgot about it..."  

1.

Kamienny (unpublished): "For 19 and 23 we only get the result for fields in which at least one
of 2, 3 doesn't remain prime.  We can try dealing with 19 and 23 by looking (later) at equations
for the modular curves if that's computable."

2.

Alternatively, deal with 19 and 23 in a way similar to how Parent dealt with  for
, which was the one case he couldn't address using his criterion.  (His paper on 

looks very painful though!)

3.

Make the algorithm for showing that  more efficient.  Right now it takes
way too long.

4.

Given 3, repeat my calculations, but for  and hope to replace the Oesterle bound of
 by

5.

float((1+2^(5/2))^2) 

       44.313708498984766

previous_prime(275) 

       271

 

       

p 7 = 1
d  = 3 p 7 = 1

max(S(4)) 1 Ô 3

d  = 5
max(S(5)) 71 Ô 2

max(S(5)) 3  Ô 4   (or something close)


