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Problem 1: Finding Elliptic Curves

Tables of Elliptic Curves over Q(
√

5)

1 Table 1: All (modular) elliptic curves over Q(
√

5) with
norm conductor up to some bound.

2 Table 2: A few hundred million elliptic curves over Q(
√

5)
with norm conductor ≤ 108 (say).

3 Table 3: Rank records. See Noam Elkies.
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Finding Curves via Modular Forms

1 Standard Conjecture: Rational newforms over Q(
√

5)
correspond to the isogeny classes of elliptic curves over
Q(
√

5). So we expect to get all curves of given conductor
by enumerating modular forms over Q(

√
5).

2 There is an approach of Dembele to compute sparse Hecke
operators on modular forms over Q(

√
5). (I have designed

and implemented the fastest practical implementation.)
Table got by computing space:
http://wstein.org/Tables/hmf/sqrt5/dimensions.txt

3 Combine with linear algebra over finite fields and the
Hasse bound to get all rational eigenvectors. (Not
optimized yet. Requires fast sparse linear algebra –
Gonzalo Tornaria has been working on this in Sage lately.)

4 Resulting table of eigenforms: http://wstein.org/
Tables/hmf/sqrt5/ellcurve_aplists.txt

http://wstein.org/Tables/hmf/sqrt5/dimensions.txt
http://wstein.org/Tables/hmf/sqrt5/ellcurve_aplists.txt
http://wstein.org/Tables/hmf/sqrt5/ellcurve_aplists.txt
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Computing Modular Forms over Q(
√

5)

Overview of Dembele’s Algorithm to Compute Forms of level n

1 Let R = maximal order in Hamilton quaternion algebra B
over F = Q(

√
5).

2 Let X = free abelian group on S = R∗\P1(OF/n).

3 To compute the Hecke operator Tp on X , compute (and
store once and for all) certain #Fp + 1 elements αp,i ∈ B
with norm p, then compute Tp(x) =

∑
αp,i (x).

That’s it! Making this really fast took thousands of lines of
tightly written Cython code, treatment of special cases, etc.

http://code.google.com/p/purplesage/source/browse/

psage/modform/hilbert/sqrt5/sqrt5_fast.pyx

http://code.google.com/p/purplesage/source/browse/psage/modform/hilbert/sqrt5/sqrt5_fast.pyx
http://code.google.com/p/purplesage/source/browse/psage/modform/hilbert/sqrt5/sqrt5_fast.pyx
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Rational Newforms over Q(
√

5)

Norm Cond Number a2 a3 a5 a7 a11 a11 ...

31 5*a-2 0 -3 2 -2 2 4 -4 4 -4 -2 -2 ? ? -6 -6 12 -4 6 -2 -8 0 0 16 10 -6

31 5*a-3 0 -3 2 -2 2 -4 4 -4 4 -2 -2 ? ? -6 -6 -4 12 -2 6 0 -8 16 0 -6 10

36 6 0 ? ? -4 10 2 2 0 0 0 0 -8 -8 2 2 -10 -10 2 2 12 12 0 0 10 10

41 a+6 0 -2 -4 -1 -6 -2 5 6 -1 2 9 -10 4 ? ? -3 4 6 -8 -12 9 -11 -4 -1 -8

41 a-7 0 -2 -4 -1 -6 5 -2 -1 6 9 2 4 -10 ? ? 4 -3 -8 6 9 -12 -4 -11 -8 -1

45 6*a-3 0 -3 ? ? -14 -4 -4 4 4 -2 -2 0 0 10 10 -4 -4 -2 -2 -8 -8 0 0 -6 -6

49 7 0 0 5 -4 ? -3 -3 0 0 5 5 2 2 2 2 -10 -10 -8 -8 -8 -8 5 5 0 0

55 a+7 0 -1 -2 ? 14 ? ? 8 -4 -6 6 8 -4 -6 6 -12 0 -10 2 0 0 -4 8 -18 6

55 -a+8 0 -1 -2 ? 14 ? ? -4 8 6 -6 -4 8 6 -6 0 -12 2 -10 0 0 8 -4 6 -18

64 8 0 ? 2 -2 10 -4 -4 4 4 -2 -2 0 0 2 2 12 12 -10 -10 8 8 -16 -16 -6 -6

71 a+8 0 -1 -2 0 -4 0 0 2 -4 6 -6 2 8 6 12 -12 6 -4 -10 ? ? 14 -4 6 18

71 a-9 0 -1 -2 0 -4 0 0 -4 2 -6 6 8 2 12 6 6 -12 -10 -4 ? ? -4 14 18 6

76 -8*a+2 0 ? 1 -3 -4 -6 3 ? ? -6 3 5 5 6 6 6 -12 8 8 -9 0 -1 -1 9 0

76 -8*a+6 0 ? 1 -3 -4 3 -6 ? ? 3 -6 5 5 6 6 -12 6 8 8 0 -9 -1 -1 0 9

76 -8*a+2 1 ? -5 1 0 2 -3 ? ? -10 5 -3 7 2 2 10 0 12 -8 7 -8 15 5 -15 0

76 -8*a+6 1 ? -5 1 0 -3 2 ? ? 5 -10 7 -3 2 2 0 10 -8 12 -8 7 5 15 0 -15

79 -8*a+3 0 1 -2 -2 -2 -4 0 8 4 -2 6 0 -8 -2 2 4 -4 10 14 12 -16 ? ? 18 -14

79 -8*a+5 0 1 -2 -2 -2 0 -4 4 8 6 -2 -8 0 2 -2 -4 4 14 10 -16 12 ? ? -14 18

80 8*a-4 0 ? -2 ? -10 0 0 -4 -4 6 6 -4 -4 6 6 12 12 2 2 -12 -12 8 8 -6 -6

81 9 0 -1 ? 0 14 0 0 -4 -4 0 0 8 8 0 0 0 0 2 2 0 0 -16 -16 0 0

89 a-10 0 -1 4 0 -4 -6 0 -4 2 6 6 -4 -4 0 6 12 0 14 -4 0 12 -16 2 ? ?

89 a+9 0 -1 4 0 -4 0 -6 2 -4 6 6 -4 -4 6 0 0 12 -4 14 12 0 2 -16 ? ?

95 2*a-11 0 -1 -2 ? 2 0 0 ? ? -6 6 -4 8 -6 -6 12 12 -10 14 12 0 -16 8 6 -6

95 -2*a-9 0 -1 -2 ? 2 0 0 ? ? 6 -6 8 -4 -6 -6 12 12 14 -10 0 12 8 -16 -6 6

99 9*a-3 0 1 ? -2 2 ? ? 4 -4 6 -2 -8 8 -6 2 12 12 -2 -2 8 -8 16 8 2 -14

99 9*a-6 0 1 ? -2 2 ? ? -4 4 -2 6 8 -8 2 -6 12 12 -2 -2 -8 8 8 16 -14 2

100 10 0 ? -5 ? -10 -3 -3 5 5 0 0 2 2 -3 -3 0 0 2 2 12 12 -10 -10 15 15

100 10 1 ? 5 ? 10 -3 -3 -5 -5 0 0 2 2 -3 -3 0 0 2 2 12 12 10 10 -15 -15
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Implementation in Sage: Uses Cython=(C+Python)/2

Install PSAGE: http://code.google.com/p/purplesage/.

Hecke Operators over Q(
√

5) in Sage

sage: import psage.modform.hilbert.sqrt5 as H

sage: N = H.tables.F.factor (100019)[0][0]; N

Fractional ideal (65*a + 292)

sage: time S = H.HilbertModularForms(N); S

Time: CPU 0.31 s, Wall: 0.34 s

Hilbert modular forms of dimension 1667, level 65*a+292

(of norm 100019=100019) over QQ(sqrt (5))

sage: time T5 = S.hecke_matrix(H.tables.F.factor (5)[0][0])

Time: CPU 0.07 s, Wall: 0.09 s

(Yes, that just took much less than a second!)
See http://nt.sagenb.org/home/pub/30/ for all code.

http://code.google.com/p/purplesage/
http://nt.sagenb.org/home/pub/30/


Curves Over
Q(

√
5)

Stein

Magma?

Why not just use Magma, which already has modular forms
over totally real fields in it, due to the general work of John
Voight, Lassina Dembele, and Steve Donnelly:
[wstein ]$ magma

Magma V2.16 -13 Fri Nov 5 2010 18:09:32

> F<w> := QuadraticField (5);

> M := HilbertCuspForms(F,

Factorization(Integers(F)*100019)[1][1]);

> time T5 := HeckeOperator(M,

Factorization(Integers(F)*5)[1][1]);

Time: 235.730 # 4 minutes

Thousand times slower than my implementation in Sage.
Magma’s implementation is very general. And the above was
just one Hecke operator. We’ll need many, and Magma gets
much slower as the subscript of the Hecke operator grows.
(REMARK: After the talk, John Voight and I decided that with the newest Magma V2.17, and with very

careful use of Magma (diving into the source code), one could do the above computation with it only taking

100 times longer than Sage.)



Curves Over
Q(

√
5)

Stein

How Many Isogeny Classes of Curves?

Rational Newforms over Q(
√

5) of level up to N
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How Many Isogeny Classes of Curves?

Rational Newforms over Q(
√

5) of level ≤ X (Least Squares)

#{newforms with norm level up to X} ∼ 0.227X 1.234

0 5000 10000 15000 20000
0

10000

20000

30000

40000
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For comparison, Cremona’s tables up to 10,000

Cremona’s tables

0 2000 4000 6000 8000 10000
0

5000

10000

15000

20000

25000

30000

35000

Conjecture (Watkins): Number of elliptic curves over Q with
level up to X is ∼ cX 5/6.
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Rational Newforms 7→ Curves over Q(
√

5)

1 Big search through equations, compute corresponding
modular form by a point count, and look up in table.
(Joanna Gaski and Alyson Deines doing this now:
http://wstein.org/Tables/hmf/sqrt5/finding_weierstrass_equations/)

2 Or, apply Dembele’s paper An Algorithm For Modular
Elliptic Curves Over Real Quadratic Fields (I haven’t
implemented this yet; how good in practice?)

3 Or, apply the method of Cremona-Lingham to find the
curves by finding S-integral points over number fields.
(Not implemented in Sage.)

4 Enumerate the curves in an isogeny class.
1 For a specific curve, bound the degrees of isogenies using

the Galois representation. (Don’t know how to do this yet.)
2 Explicitly compute all possible isogenies, e.g., using

Cremona’s student Kimi Tsukazaki’s Ph.D. thesis full of
isogeny formulas. (I’m not sure how to do this.)

http://wstein.org/Tables/hmf/sqrt5/finding_weierstrass_equations/
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Comment from Noam Elkies about previous Slide

Noam Elkies: “Apropos Cremona-Lingham: remember that at
Sage Days 22 I suggested a way to reduce this to solving S-unit
equations (via the lambda-invariant), which is effective, unlike
finding S-integral points on y2 = x3 + k .
Also, see my Atkin paper
http://www.math.harvard.edu/~elkies/xisog.pdf?”

http://www.math.harvard.edu/~elkies/xisog.pdf
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Elliptic Curves over Q(
√

5)
Joanna Gaski and Alyson Deines make tables like this (a = (1 +

√
5)/2)

31 5*a-2 0 -3 2 -2 2 ... [1,a+1,a,a,0]

31 5*a-3 0 -3 2 -2 2 ... [1,-a-1,a,0,0]

36 6 0 ? ? -4 10 ... [a,a-1,a,-1,-a+1]

41 a+6 0 -2 -4 -1 -... [0,-a,a,0,0]

41 a-7 0 -2 -4 -1 -... [0,a-1,a+1,0,-a]

45 6*a-3 0 -3 ? ? -14... [1,1,1,0,0]

49 7 0 0 5 -4 ? -... [0,a,1,1,0]

55 a+7 0 -1 -2 ? 14... [1,-a+1,1,-a,0]

55 -a+8 0 -1 -2 ? 14... [1,a,1,a-1,0]

64 8 0 ? 2 -2 10 ... [0,a-1,0,-a,0]

71 a+8 0 -1 -2 0 -4... [a,a+1,a,a,0]

71 a-9 0 -1 -2 0 -4... [a+1,a-1,1,0,0]

76 -8*a+2 0 ? 1 -3 -4 ... [a,-a+1,1,-1,0]

76 -8*a+6 0 ? 1 -3 -4 ... [a+1,0,1,-a-1,0]

76 -8*a+2 1 ? -5 1 0 2... [1,0,a+1,-2*a-1,0]

76 -8*a+6 1 ? -5 1 0 -... [1,0,a,a-2,-a+1]

79 -8*a+3 0 1 -2 -2 -2... [a,a+1,0,a+1,0]

79 -8*a+5 0 1 -2 -2 -2... [a+1,a-1,a,0,0]

80 8*a-4 0 ? -2 ? -10... [0,1,0,-1,0]

81 9 0 -1 ? 0 14 ... [1,-1,a,-2*a,a]

89 a-10 0 -1 4 0 -4 ... [a+1,-1,1,-a-1,0]

89 a+9 0 -1 4 0 -4 ... [a,-a,1,-1,0]

95 2*a-11 0 -1 -2 ? 2 ... [a,a+1,a,2*a,a]

95 -2*a-9 0 -1 -2 ? 2 ... [a+1,a-1,1,-a+1,-1]

99 9*a-3 0 1 ? -2 2 ?... [a+1,0,0,1,0]

99 9*a-6 0 1 ? -2 2 ?... [a,-a+1,0,1,0]

100 10 0 ? -5 ? -10... [1,0,1,-1,-2]

100 10 1 ? 5 ? 10 -... [a,a-1,a+1,-a,-a]
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Database

A MongoDB Database

Text files (http://wstein.org/Tables/hmf/sqrt5) and an
indexed queryable MongoDB database:

http://db.modform.org

Try it out.

http://wstein.org/Tables/hmf/sqrt5
http://db.modform.org
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Canonical Minimal Weierstrass Model?

Canonical Minimal Weierstrass Models over Q

Fact: Every elliptic curve over Q has a unique minimal
Weierstrass equation [a1, a2, a3, a4, a6] with a1, a3 ∈ {0, 1} and
a2 ∈ {0,−1, 1}?

What about Q(
√

5)

Cremona: Something similar is true for number fields, for
appropriate choices of conventions. ...
“Let me know what ideas you come up with for the unit
scalings, since we need to set a convention for the rest of the
world to use!” – Cremona, email, 2010-10-28

(Not worked out yet.)
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Huge Table: Like Stein-Watkins over Q(
√

5)

1 Enumerate over pairs (c4, c6) that satisfy certain
congruence conditions so they define a minimal curve,
with bounded discriminant and conductor. (Details being
worked out by Joanni and Aly; they estimate that there
are about 3 million pairs c4, c6 modulo 1728 to consider.)

2 Compute first few ap for each curve; use these ap as a key,
and keep only one curve from each isogeny class.

3 Get a table of hundreds of millions of curves over Q(
√

5).

4 Compute data, e.g., analytic rank, about each.
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2. What to do with ’em
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Problem 2: Computing With Curves

Some Invariants of an Elliptic Curve over Q(
√

5)

1 Torsion subgroup

2 Tamagawa numbers and Kodaira symbols

3 Rank and generators for E (Q(
√

5)): Simon 2-descent is relevant

4 Regulator

5 L(E , s): analytic rank, leading coefficient, zeroes in critical strip

6 #X(E )an: conjectural order of X.
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BSD Challenges

Some Challenges

1 Verify that #X(E )an is approx. perfect square for curves
with norm conductor up to some bound.

2 Prove the full BSD conjecture for a curve over Q(
√

5).

3 Prove the full BSD conjecture for a curve over Q(
√

5)
that doesn’t come by base change from a curve over Q.

4 Verify Kolyvagin’s conjecture for a curve of rank ≥ 2.

Nothing done at all yet! Proving BSD for specific curves will
likely require explicit computation with Heegner points, the
Gross-Zagier formula, etc., following Zhang. It also likely
requires proving something new using Euler systems.



Curves Over
Q(

√
5)

Stein

Other Interesting things to compute

Other invariants...

1 All integral points: a recent student (Nook) of Cremona
did this in Magma, so port it. (See next slide.)

2 Compute Heegner points, as defined by Zhang. Find
their height using his generalization of the Gross-Zagier
formula. (Requires level is not a square.)

3 Congruence number:
1 define using quaternion ideal Hecke module,
2 or define via congruences between q-expansions.

4 Galois representations: Images of Galois (like Sutherland
did for elliptic curves over Q)

5 Congruence graph: between all elliptic curves up to some
conductor, where two curves are connected if they have
the same mod p representations.
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Integral Points over Number Fields

Hi William,

I saw the slides for your talk on elliptic curves over

Q(sqrt(5)). You mention translating Nook’s Magma code

for integral points as a future project. That’s exactly

what Jackie Anderson and I did at Sagedays 22. If

someone is interested in that, make sure they look our

work first (code attached).

The translation is done. There is a speed up against

Magma version by using python generators. What needs

to be done is a bit more testing (against Magma

version). John Cremona warned us to be careful with

this algorithm because it produces an upper bound

and exhaustively searches up to it. If the bound

is a bit lower it might fail on rare occasions.

Rado Kirov
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Rank Records

The Rank Challenge Problem

What is the “simplest” (smallest norm conductor) elliptic curve
over Q(

√
5) of rank 0, 1, 2, 3, 4, 5,...? Best known records:

Rank Norm(N) Equation Person
0 31 (prime) [1,a+1,a,a,0] Dembele
1 199 (prime) [0,-a-1,1,a,0] Dembele
2 1831 (prime) [0,-a,1,-a-1,2a+1] Dembele
3 26569 = 1632 [0,0,1,-2,1] Elkies
4 1209079 (prime) [1, -1, 0, -8-12a, 19+30a] Elkies
5 64004329 [0, -1, 1, -9-2a, 15+4a] Elkies

Best possible? (Over Q the corresponding best known conductors

are 11, 37, 389, 5077, 234446, and 19047851.)
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Examples: Curves of rank 0,1,2 in detail

I computed all BSD invariants and solved for
Xan for the first curves of rank 0,1,2.

Bit of a disaster...
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Example: Rank 0 Curve of Norm Conductor 31

E : y2 + xy + ay = x3 + (a + 1) x2 + ax

Conductor 5a− 2

Torsion Z/8Z
Tamagawa Numbers cp = 1 (I1)

Rank and gens 0

Regulator 1

L∗(E , 1) 0.359928959498039

Real Periods 3.05217315335726, 8.43805988789973

X(E )an =

√
D · L∗(E , 1) · T 2

ΩE · RegE ·
∏

cp

=
√

5 · 0.35992 · 82/(3.05217 · 8.43805) = 2.0000000 . . .

Why is this wrong? Guess: ΩE is somehow wrong...?
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Example: Rank 0 Curve of Norm Conductor 31

E : y2 + xy + ay = x3 + (a + 1) x2 + ax

Sato-Tate Distribution: Primes up to Norm 1000

-0.5 0 0.5 1
0

0.2

0.4

0.6

0.8



Curves Over
Q(

√
5)

Stein

Example: Rank 0 Curve of Norm Conductor 31

E : y2 + xy + ay = x3 + (a + 1) x2 + ax

Sato-Tate Distribution: Primes up to Norm 20000

-1 -0.5 0 0.5 1
0

0.1

0.2

0.3
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0.5

0.6

0.7

0.8
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Sato-Tate

Switch to Drew’s Animations
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Example: Rank 0 Curve of Norm Conductor 31

E : y2 + xy + ay = x3 + (a + 1) x2 + ax

Finding a zero in the Critical Strip: real and imag parts

1 2 3 4 5

-2

-1

1

2

3

Zero at 1 + 3.678991i .
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Example: Rank 1 Curve of Norm Conductor 199

E : y2 + y = x3 + (−a− 1) x2 + ax

Table for the curve 199

Conductor 3a + 13

Torsion Z/3Z
Tamagawa Numbers cp = 1 (I1)

Rank and gens 1, gen (0, 0)

Regulator 0.154308568543030

L∗(E , 1) 0.657814883009960

Real Periods 3.53489274657737, 6.06743219455559

X(E )an =

√
D · L∗(E , 1) · T 2

ΩE · RegE ·
∏

cp

=
√

5 · 0.657 · 32/(3.53 · 6.067 · 0.154 · 1) = 4.00000 . . .
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Integral Points for curve 199

Rado Kirov and Jackie Anderson’s Code...

sage: E = EllipticCurve ([0,-a-1,1,a,0]); show(E)

sage: integral_points(E, E.gens ())

[(a : -1 : 1), (a + 1 : a : 1), (2*a + 2 : -4*a - 3 : 1),

(-a + 3 : 3*a - 5 : 1), (-a + 2 : -2*a + 2 : 1),

(6*a + 3 : 18*a + 11 : 1),

(-42*a + 70 : -420*a + 678 : 1),

(1 : 0 : 1), (0 : 0 : 1)]
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Example: Rank 2 Curve of Norm Conductor 1831

E : y2 + y = x3 + (−a) x2 + (−a− 1) x + (2a + 1)

Table for the curve 1831

Conductor 7a + 40

Torsion 1

Tamagawa Numbers cp = 1 (I1)

Rank and gens 2, gens (0 : −a− 1 : 1) ,(
−3

4a + 1
4 : −5

4a−
5
8 : 1

)
Regulator 0.191946627694056

L∗(E , 1) 2.88288222151816

Real Periods 3.75830925418163, 5.02645072067941

X(E )an =

√
D · L∗(E , 1) · T 2

ΩE · RegE ·
∏

cp
= 0.88888888888 . . . ∼ 8

9

Wrong again. Why? Probably the regulator is wrong (saturation).
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Remark About Sha Orders

Some remarks about Sha being wrong. E.g., Dan Kane and Henri

Cohen both pointed out that “there may be a factor of 2r coming

from inconsistent normalizations of the height/regulator.”

Noam Elkies: “Finally, for your two examples where #X seems to be
2 or 8/9, the discriminant in each case has negative norm, so one
positive and one negative conjugate; I think this means the real locus
has two components, so indeed ΩE should be doubled. This will fix
the first #X. The second one is still the bizarre 4/9. So we must
also explore your suggestion about saturation. Indeed a naive search
quickly returns a point (1,-a), and then 3 times this point plus 6
times your generator (0,-a-1) gives your second generator. So indeed
we find a group containing the span of your two generators with
index 3.”

The rank 1 example has a factor of 2 coming from Elkies’s
remark, and a factor coming from the rank, so there is still
something amiss!
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Summary

1 Three kinds of tables: all curves up to given conductor
(like Cremona), large number of curves (like
Stein-Watkins), rank records (like Elkies)

2 Compute all BSD invariants: much work remains

3 L-functions: zeros, Sato-Tate data, etc.

4 Integral points

5 For everything, much work remains.

Questions or Comments?


