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Goal

Let p be a prime. The goal of this talk is to explain and
the following increasingly general Calegari-Stein conjectures:

Conjecture 1. (–). If E/Q is an elliptic
conductor p, then the modular degree mE of
divisible by p.

Conjecture 2. (–). If T2(p) is the Heck
gebra associated to S2(Γ0(p)), then p does not
the index of T2(p) in its normalization.

Conjecture 3. (–). If p > k−1, then there
explicit formula for the p-part of the index of
its normalization.



Conj 1: If E of conductor p, then

Vandiver: Conjecture 1 looks like Vandiver’s conjecture,

asserts that p - h−
p . (Note Flach’s Selmer group connection.)

Data: (Watkins) For p < 107 there are 52878 curves

Watkins table. No counterexamples to conjecture

are 23 curves such that mE is divisible by a prime `
example the curve y2 + xy = x3 − x2 − 391648x − 94241311

prime conductor p = 4847093 has modular degree 2 ·
Smallest p with ` > p is p = 1194923.

Ratio: Max ratio mE/p is ∼ 23.2, attained for p =

First curve with mE/p > 1 has level 13723, where mE =

24 · 3 · 337. Smallest mE/p > 1 is p = 1757963; mE =

Conjecture is consistent with ABC-conjecture (mE is



Cuspidal Modular Forms

Congruence Subgroup:

Γ0(N) =

{(

a b
c d

)

∈ SL2(Z) such that N | c

}

Cusp Forms: Sk(N) =

{

f : h → C such that

f(γ(z)) = (cz + d)−kf(z) all γ ∈ Γ0

and f is holomorphic at the cusps

Fourier Expansion:

f =
∑

n≥1

ane2πizn =
∑

n≥1

anqn ∈ C[[q]].



Modular Forms Examples

Sk(N) = 0 if k is odd, so we will not consider odd k further.

For k ≥ 2, a basis of Sk(N) can be computed to

precision using modular symbols (e.g., my MAGMA pack

Appears that no formal analysis of complexity has b

Certainly polynomial time in N and required precision.

MAGMA CODE

> S := CuspForms(37,2);

> Basis(S);

[

q + q^3 - 2*q^4 - q^7 + O(q^8),

q^2 + 2*q^3 - 2*q^4 + q^5 - 3*q^6 + O(q^8)

]



Basis for S14(11):

> S := CuspForms(11,14); SetPrecision(S,17);

> Basis(S);

q - 74*q^13 - 38*q^14 + 441*q^15 + 140*q^16 +

q^2 - 2*q^13 + 78*q^14 + 24*q^15 - 338*q^16 + O(q^17),

q^3 + 18*q^13 - 72*q^14 + 89*q^15 + 492*q^16 + O(q^17),

q^4 + 12*q^13 + 31*q^14 - 18*q^15 - 193*q^16 + O(q^17),

q^5 - 10*q^13 + 46*q^14 - 63*q^15 - 52*q^16 + O(q^17),

q^6 + 11*q^13 - 18*q^14 - 74*q^15 - 4*q^16 + O(q^17),

q^7 - 7*q^13 - 16*q^14 + 42*q^15 - 84*q^16 + O(q^17),

q^8 - q^13 - 16*q^14 - 18*q^15 - 34*q^16 + O(q^17),

q^9 - 8*q^13 - 2*q^14 - 3*q^15 + 16*q^16 + O(q^17),

q^10 - 5*q^13 - 2*q^14 - 6*q^15 + 14*q^16 + O(q^17),

q^11 + 12*q^13 + 12*q^14 + 12*q^15 + 12*q^16 + O(q^17),

q^12 - 2*q^13 - q^14 + 2*q^15 + q^16 + O(q^17)



Hecke algebras

Hecke Operators: Let p be a prime.

Tp





∑

n≥1

an · qn



 =
∑

n≥1

anr · q
n + pk−1

∑

n≥1

an · qnp

(If p | N , drop the second summand.) This preserves

defines a linear map

Tp : Sk(N) → Sk(N).

Similar definition of Tn for any integer n.

Hecke Algebra: A commutative ring:

Tk(N) = Z[T1, T2, T3, T4, T5, . . .] ⊂ EndC(Sk(N))



Computing Hecke Algebra

Fact: Tk(N) = Z[T1, T2, T3, T4, T5, . . .] is free as a Z-mo

rank equal to dimSk(N).

Sturm Bound: Tk(N) is generated as a Z-module by T
where b is the ceiling of

k

12
· N ·

∏

p|N

(

1 −
1

p

)

.

Example: For N = 37, bound is 7, and T2(37) has

T1 =

(

1 0
0 1

)

and T2 =

(

−2 1
0 0

)

.

There are several other Tk(N)-modules isomorphic

and I use these instead to compute Tk(N) as a ring.



Discriminants

The discriminant of Tk(N) is an integer. It measures

cation, or what’s the same, congruences between simultaneous

eigenvectors for Tk(N), hence is related to the modula

Discriminant:

Disc(Tk(N)) = Det(Tr(ti · tj)),

where t1, . . . , tn are a basis for Tk(N) as a free Z-module.

Examples:

Disc(T2(37)) = Det

(

2 −2
−2 4

)

= 4

Disc(T14(11)) = 246 · 314 · 52 · 1142 · 79 · 241 · 1163 · 40163 ·

47552569849·124180041087631·205629726345973



Ribet’s Question

I became interested in computing with modular forms

was a grad student and Ken Ribet started asking:

Question: (Ribet, 1997) Is there a prime p so that p | Disc(

Ribet had proved a theorem about X0(p) ∩ J0(p)tor
hypothesis that p - T2(p), and wanted to know how restrictive

hypothesis was. Note that when k > 2, usually p | Disc(

Using a PARI script of Joe Wetherell, I set up a computation

my laptop and found exactly one example: p = 389.



Index in the Normalization

Last year I checked that for p < 50000 there are no other

ples in which p | Disc(T2(p)). For this I used the Mestre

of graphs, which involves computing with the free abelian

on the supersingular j-invariants in Fp2 of elliptic curves.

Let T̃k(p) be the normalization of Tk(p). Since Tk(p)

in a product of number fields, T̃k(p) is the product of

of integers of those number fields.

It turned out that Ribet could prove his theorem

weaker hypothesis that p - [T̃k(p) : Tk(p)]. I was unable

a counterexample to this divisibility. (Note: Matt Bak

was a proof of the full theorem using different metho



Conjecture 2

Conjecture 2. (–). If T2(p) is the Heck
gebra associated to S2(Γ0(p)), then p does not
the index of T2(p) in its normalization.

The primes that divide [T̃k(p) : Tk(p)] are called congruence

primes. They are the primes of congruence between non-Gal

conjugate eigenvectors for Tk(p). Using this observation

other theorem of Ribet (and Wiles et al. modularity),

that a “no” answer to the above question implies that

divide the modular degree of any elliptic curve of conducto

This is why Conjecture 2 implies Conjecture 1.

But is there any reason to believe Conjecture 2, beyond

that it is true for p < 50000?



Higher Weight

Recall that

Disc(T14(11)) = 246 · 314 · 52 · 1142 · 79 · 241 · 1163 · 40163 ·
47552569849·124180041087631·205629726345973

Notice the large power of 11. Upon computing the p-maximal
T14(11) ⊗Z Q, we find that 11 - Disc(T̃14(11)), so all the 11

dex of T14(11) in T̃14(11). Thus

ord11([T̃14(11) : T14(11)]) = 21.



Data for k = 4
Each row contains p and ordp(Disc(T4(17))). E.g., ord17(Disc(T

2 3 5 7 11 13 17 19 23 29 31 37 41
0 0 0 0 0 2 2 2 2 4 4 6 6

61 67 71 73 79 83 89 97 101 103 107 109 113 127

10 10 10 12 12 12 14 16 16 16 16 18 18

149 151 157 163 167 173 179 181 191 193 197 199 211 223

24 24 26 26 26 28 28 30 30 32 32 32 34

239 241 251 257 263 269 271 277 281 283 293 307 311 313

38 40 40 42 42 44 44 46 46 46 48 50 50

347 349 353 359 367 373 379 383 389 397 401 409 419 421

56 58 58 58 60 62 62 62 65 66 66 68 68

443 449 457 461 463 467 479 487 491 499

72 74 76 76 76 76 78 80 80 82

F. Calegari (during a talk I gave): Except for 389, there is clearly
Calegari and I computed 2 · [T̃4(p) : T4(p)] and obtained the same
as above, except for p = 389 which now gives 64. We also considered
examples where

2 · [T̃4(p) : T4(p)] 6= Disc(Tk(p)).



Conjecture 3
In all cases, we found the following amazing pattern:

Conjecture 3. Suppose p ≥ k − 1. Then

ordp([T̃k(p) : Tk(p)]) =
⌊ p

12

⌋

·
(k/2

2

)

+ a(p, k),

where

a(p, k) =















































0 if p ≡ 1 (mod 12),

3 ·
(dk

6
e

2

)

if p ≡ 5 (mod 12),

2 ·
(dk

4
e

2

)

if p ≡ 7 (mod 12),

a(5, k) + a(7, k) if p ≡ 11 (mod 12).

Warning: The conjecture is false without the constraint that p
pared to k. Though it works for our running example p = 11, k
the formula yields 0 + 3 ·

(

3
2

)

+ 2 ·
(

4
2

)

= 9 + 12 = 21, which is correct.



Summary
For a long time I had no idea whether to conjecture that there
shouldn’t be mod p congruence between nonconjugate eigenforms,
alently, whether p divides modular degrees at prime level. By
higher weight and computing, a simple conjectural formula emerges,
when specialized to 2 is the conjecture that there are no mod p congruences.

Future Direction. Explain why there are so many mod p congruences
level p, when k ≥ 4. See paper for a strategy.

Computational Question. Push computation of ordp(Disc(T2(p
using Wiedemann’s minimal polynomial algorithm.

Vandiver-ish Question. Investigate the connection between Conjecture
and Flach’s results on modular degrees annihilating Selmer groups.


