Homework 4 for Math 581F Due FRIDAY October 26, 2007

Each problem has equal weight, and parts of problems are worth the same amount as each other.

- 1. (a) Find by hand and with proof the ring of integers of each of the following two fields: $\mathbb{Q}(\sqrt{5})$, $\mathbb{Q}(i)$.
 - (b) Find the ring of integers of $\mathbb{Q}(x^5 + 7x + 1)$ using a computer.
- 2. Let \mathcal{O}_K be the ring of integers of a number field K, and let $p \in \mathbb{Z}$ be a prime number. What is the cardinality of $\mathcal{O}_K/(p)$ in terms of p and $[K : \mathbb{Q}]$, where (p) is the ideal of \mathcal{O}_K generated by p?
- 3. Explicitly factor the ideals generated by each of 2, 3, and 13 in the ring of integers of $\mathbb{Q}(\sqrt[3]{2})$. (Thus you'll factor three separate integral ideals as products of prime ideals.) You may assume that the ring of integers of $\mathbb{Q}(\sqrt[3]{2})$ is $\mathbb{Z}[\sqrt[3]{2}]$, but do *not* simply use a computer command to do the factorizations.
- 4. Let $K = \mathbb{Q}(\zeta_{13})$, where ζ_{13} is a primitive 13th root of unity. Note that K has ring of integers $\mathcal{O}_K = \mathbb{Z}[\zeta_{13}]$.
 - (a) Factor 2, 3, 5, 7, 11, and 13 in the ring of integers \mathcal{O}_K . You may use a computer.
 - (b) For $p \neq 13$, find a conjectural relationship between the number of prime ideal factors of $p\mathcal{O}_K$ and the order of the reduction of p in $(\mathbb{Z}/13\mathbb{Z})^*$.
 - (c) Compute the minimal polynomial $f(x) \in \mathbb{Z}[x]$ of ζ_{13} . Reinterpret your conjecture as a conjecture that relates the degrees of the irreducible factors of $f(x) \pmod{p}$ to the order of p modulo 13. Does your conjecture remind you of quadratic reciprocity?
- 5. Let p be a prime. Let \mathcal{O}_K be the ring of integers of a number field K, and suppose $a \in \mathcal{O}_K$ is such that $[\mathcal{O}_K : \mathbb{Z}[a]]$ is finite and coprime to p. Let f(x) be the minimal polynomial of a. We proved in class that if the reduction $\overline{f} \in \mathbb{F}_p[x]$ of f factors as

$$\overline{f} = \prod g_i^{e_i},$$

where the g_i are distinct irreducible polynomials in $\mathbb{F}_p[x]$, then the primes appearing in the factorization of $p\mathcal{O}_K$ are the ideals $(p, g_i(a))$. In class, we did not prove that the exponents of these primes in the factorization of $p\mathcal{O}_K$ are the e_i . Prove this.

- 6. (a) Give an example of a cubic *Galois* extension K of \mathbb{Q} . Use Sage to factor each prime p < 100 (or more) in \mathcal{O}_K and record the number of prime factors of each p.
 - (b) Give an example of a cubic *non-Galois* extension K of \mathbb{Q} . Use Sage to factor each prime p < 100 (or more) in \mathcal{O}_K and record the number of prime factors of each p.
 - (c) Come up with a more refined conjecture about the proportion of primes p for which the number of prime factors is 1, 2 or 3 in each of the above two cases.