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In this paper, we will discuss about a sequence of subgroups of galois groups
called ramification groups. In general, these ramification groups can be very com-
plicated; however, in the case of cyclotomic extensions, they are subgroups of a
finite cyclic group, which behaves relatively well. So, our goal in this paper is to
look at a few properties about ramification groups in general, and then compute
explicitly ramification groups of the cyclotomic extensions.

1. DEFINITIONS AND PROPERTIES

Throughout this paper, let K/Q be a finite separable Galois extension of a
number field K. Denote G = Gal(K/Q). For a prime p € Z and a prime ideal
p C Ok over p, we have learned about the decomposition group and inertia group
of p, which are both subgroups of G.

Definition 1. TheDecomposition group of p is defined by

Dy = {0 € Glo(p) = p}
. The inertia group is defined by
I, = {0 € Glo(a) = a(mod p) for all a € Ok}

We have discussed in class the following properties:
(i) The sequence
1— 1, - Dy, — Gal(k,/F,) — 1
is exact, i.e. I, is the kernel of a surjection D, — Gal(k,/F,)
(ii) The order of D, is ef, and that of I, is e where e is the ramification index
and f if the residue class degree of p.

Now, we can define a decreasing sequence of subgroups, called ramsification
groups by modifying the inertia group by looking at the residue field of prime
powers.

Definition 2. The m-th ramification group is defined for m =0,1,2,... by
G, = {0 € Glo(a) = a(mod p™T) for all a € Ok}

We can see from the definition that Gg = I, and is the largest subgroup of G
that acts trivially on the residue field Ok /p. Since O /p C Ok /p? C Ok /p3 C ...,
the ramification groups form a decreadng sequence Gy 2 G; 2 G2 D ...

Because L/Q is a finite Galois extension, G is finite. We have a decreasing
sequence of subgroups of a finite group G, from which we can conclude that it must
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stabilize for some n. What we would like to do here is to show that G,, = 1 for
some 7.

In order to do this, we need to know certain properties of valuations. Since we
have a dedekind domain, we can take the exponential valuation, v, for our map
from Ok to R, which is given by

(@) = [Tp~
p

where the product is taken over all nonzero prime ideals. Moreover, there exists
an element 7 € Ok such that v, (n") = i for all i € Z. In the completion of Ok,
every element can be uniquely written as an infinite sum of linear combinations of
mls. Because 7! € p"*! by passing to the quotient, every element in Ox /p can
be expressed as a linear combinations of 7's for i = 1,2,..,n in the residue field
OK/}J”+1.

Lemma 3. With  defined as above, for m =1,2,...
G = {0 € Glo(r) = 7(mod p™ 1)}

Proof. Clearly the left hand side of the equality is contained in the right hand side.
Thus, we need to show the other containment. Let oo € O . Denote the fixed field
of I, by T'. There exit ag, aq, ..., ap € Or such that

a= Z a;m (mod p™Tt)
=0

Now take o € D, such that o(7) = 7 (mod p"T!). Since o acts trivially on Ok /p,
o acts trivially on elements of T, such as «;s. Then we have

ola) = Zaia(ﬂ)i = Zaﬂri = a(mod p"T1)
=0

=0

Proposition 4. G,, =1 for sufficiently large n.

Proof. Let 0 € Gy, for all m = 1,2,... We want to show that such o is the identity.
Since o(7) = 7 (mod p" 1) for all n, o(r) = 7. Because 7 is taken to be vy (7) = 1,
this imply that T'(7) contains p, where T is again the fixed field of I,. Thus the
ramification index of T'(7)/T must be e, where we also know that K/T is of degree
e (discussed in class). Therefore T'(7) = K. Because o acts trivially on 7' and on
m, o fixes every element of K. O

2. ExampLE: THE Cycroromic FIELD (p =7)

Now I would like to compute the decomposition groups, inertia groups and ram-
ification groups of the cyclotomic field K = Q(({7), which is a degree 6 extension of
Q, with the defining minimal polynomial (z” —1)/(x — 1). The ring of integers O
is given by Z[(7].

The galois group Gal(K/Q)is a cyclic group of order 6, with a generator (¢; —
(¢7)?). Because it is cyclic, we can find D, and I, easily by the order of the
subgroup.
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sage: K.<a> = NumberField((x"7-1)/(x-1))

sage: I= K.fractional_ideal(2); I.factor()

(Fractional ideal (a"5 + a”4 + 1) of Number Field in a with ..
(Fractional ideal (a"3 + a"2 + 1) of Number Field in a with ..

sage: I= K.fractional_ideal(3); I.factor()
Fractional ideal (3) of Number Field in a with defining ...

sage: I= K.fractional_ideal(5); I.factor()
Fractional ideal (5) of Number Field in a with defining ...

sage: I= K.fractional_ideal(7); I.factor()

(Fractional ideal (a"5 + a™4 + a”3 + a2 + a + 2) of Number ..

sage: I= K.fractional_ideal(11); I.factor()

(Fractional ideal (-2*a"4 - 2%a”~2 - 2%a + 1) of Number Field ..
(Fractional ideal (2*a”5 + 2*a”4 + 3*a”3 + 2) of Number Field ..

sage: I= K.fractional_ideal(13); I.factor()

(Fractional ideal (a”5 - a™4 - a”3 + a2 + 1) of Number Field ..
(Fractional ideal (2*a"4 + a"3 + a~2 + 2%a) of Number Field ..
(Fractional ideal (a5 + 2%¥a”4 + 2*xa"3 + a2 + 2) of Number ...

sage: I= K.fractional_ideal(17); I.factor()
Fractional ideal (17) of Number Field in a with defining ...

sage: I= K.fractional_ideal(19); I.factor()
Fractional ideal (19) of Number Field in a with defining ...

sage: I= K.fractional_ideal(23); I.factor()

(Fractional ideal (-2*a”5 - 5*a"2 - 2xa — 2) of Number Field ..
(Fractional ideal (2*a”5 + 2*a”4 + 5%a”3 + 2) of Number Field.

sage: I= K.fractional_ideal(29); I.factor()
(Fractional ideal (-a”5 - a4 - 2*a"3 - a”2 - 1) of Number

(Fractional ideal (a"5 - a4 + a) of Number Field in a with ..
(Fractional ideal (a"5 + a"4 + a"2 + a + 2) of Number Field ...
(Fractional ideal (-a"4 - a"3 - a2 - a - 2) of Number Field ..
(Fractional ideal (a"3 + a2 - a) of Number Field in a with ..
(Fractional ideal (-a"5 + a”3 - 1) of Number Field in a with ..

)
)

L)k
)

)76

L) ox
)

L)k
E3

L) ox

L)

) ok
L) %
) *

L) ox

L) ox

)



4 EINA OOKA

In this example, (7) is the only prime in Z that factors in Ok to be have a
nontrivial inertia group. We would like to compute the series of ramification groups
for thisp = (G + G+ G+ + ¢ +2) over 7.

As we’ve shown in Lemma 3, we only have to check which galois element acts
trivially on 7 (mod p"*1), for 7 € Ok such that v,(m) = 1. Clearly we can take
T =C+ ¢+ + 2+ + 2, which is the generator of p itself. Also take the
generator of the galois group to be o : (7 — ((7)3.

In the following computation, p = J, b = o(7) — 7, ¢ = 0%(7) — 7 and d =
o3(r) —m. T am examining whether those elements are in p™. If it is, then it means
that () = 7 (mod p™) for i = 1,2,3. We have to check only for o for i = 1,2, 3,
since these are generators of all the subgroups, Z/6Z, Z/3Z and Z/2Z, respectively.

sage: J = (K.fractional_ideal(a”5 + a"4 + a"3 + a"2 + a + 2))

sage: b = (21*%a”15 - 14*%a”12 + 21*a”9 + 7xa”3 + 7)-(21*a"5 - 14xa”4 + 21%a”3 + 7*xa + 7)
sage: b in J

True

sage: b in J"2

True

sage: b in J°7
True
sage: b in J°8
False

sage: c= (21%a”10 - 14*%a”8 + 21*%a"6 + 7*a"2 + 7)-(21%a"5 - 14*a"4 + 21*a"3 + 7xa + 7)
sage: c in J°7

True

sage: c in J°8

False

sage: d= (21%a"30 - 14*a”24 + 21*a”18 + 7*a"6 + 7)-(21*a”5 - 14xa”4 + 21%a”3 + T*xa + 7)
sage: d in J°7
True
sage: d in J°8
False
This shows that ramification groups G,, is the whole galois group for m =
0,1,2,...,6, and is trivial for m > 6.

Go = (Z/72)* 2 (Z)7Z)* 2 (Z/TZ)* D (Z)TZ)* 2 (Z/TZ)* D (Z)TZ)* 2 (Z/TZ)* D {e} = G7

As we have observed above, 7 factors into a prime to the power of 6, creating
interesting sequence of ramification groups. This is in fact true for any prime p in
the cyclotomic extension by (p, i.e., p always factor as a prime to the power of p-1
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sage: K.<a> = NumberField((x"7-1)/(x-1))
sage: I= K.fractional_ideal(7); I.factor()
(Fractional ideal (a”5 + a™4 + a”3 + a2 + a + 2) of Number ...)"6

sage: K.<a> = NumberField((x"13-1)/(x-1))
sage: I= K.fractional_ideal(13); I.factor()
(Fractional ideal (-a"4 + 1) of Number Field in a with ...)712

sage: K.<a> = NumberField((x"19-1)/(x-1))
sage: I= K.fractional_ideal(19); I.factor()
(Fractional ideal (-a"15 + a”12) of Number Field in a ...)"18

Granting this fact, the next proposition follows easily by noting that the order
of I, C Dy is e.

Proposition 5. For any prime p with the cyclotomic field Q((,), the decomposition
group and the inertia group of primes over p are always the Galois group itself.

By observing that the G, for 7 in Q({7) was the whole galois group for m =
1,2,...6, and trivial otherwise, we might want to guess that GG,, is the whole galois
group for m = 1,2,...,p — 1 and trivial for m > 6. This is actually not true in
general. Consider the following counter-example when p = 5 with the generator of

the galois group (¢5 — (¢5)?).

sage: K.<a> = NumberField((x"5-1)/(x-1))

sage: I= K.fractional_ideal(5); I.factor()

(Fractional ideal (a"3 + 2*a”2 + a + 1) of Number Field in a ...)"4
sage: J = (K.fractional_ideal(a”3 + 2%a”"2 + a + 1))

sage: b = (a"6 + 2%¥a”4 + a”2 + 1) - (2”3 + 2%xa”2 + a + 1)

sage: b in J

True

sage: b in J°2

False

sage: ¢ = (2”12 + 2%a"8 + a”4 + 1) - (a"3 + 2%¥a”2 + a + 1)
sage: ¢ in J

True

sage: ¢ in J°2

False

Therefore the series of ramification group for this case is:

I, = (Z/57)% 2 {e} = Gy



EINA OOKA

REFERENCES

[1] Helmut Koch, Number Theory - Algebraic Numbers and Function, Graduate Studies in Math-
ematics Volume 24 (2000), ppl71- 176.
[2] P. Stevenhagen, Voortgezette Getaltheorie, Thomas Stieltjes Institute (2002), p46



