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In this paper, we will discuss about a sequence of subgroups of galois groups
called ramification groups. In general, these ramification groups can be very com-
plicated; however, in the case of cyclotomic extensions, they are subgroups of a
finite cyclic group, which behaves relatively well. So, our goal in this paper is to
look at a few properties about ramification groups in general, and then compute
explicitly ramification groups of the cyclotomic extensions.

1. Definitions and Properties

Throughout this paper, let K/Q be a finite separable Galois extension of a
number field K. Denote G = Gal(K/Q). For a prime p ∈ Z and a prime ideal
p ⊂ OK over p, we have learned about the decomposition group and inertia group
of p, which are both subgroups of G.

Definition 1. TheDecomposition group of p is defined by

Dp = {σ ∈ G|σ(p) = p}
. The inertia group is defined by

Ip = {σ ∈ G|σ(a) ≡ a(mod p) for all a ∈ OK}
.

We have discussed in class the following properties:
(i) The sequence

1→ Ip → Dp → Gal(kp/Fp)→ 1
is exact, i.e. Ip is the kernel of a surjection Dp → Gal(kp/Fp)

(ii) The order of Dp is ef , and that of Ip is e where e is the ramification index
and f if the residue class degree of p.

Now, we can define a decreasing sequence of subgroups, called ramification
groups by modifying the inertia group by looking at the residue field of prime
powers.

Definition 2. The m-th ramification group is defined for m = 0, 1, 2, ... by

Gm = {σ ∈ G|σ(a) ≡ a(mod pm+1) for all a ∈ OK}
.

We can see from the definition that G0 = Ip, and is the largest subgroup of G
that acts trivially on the residue field OK/p. Since OK/p ⊆ OK/p2 ⊆ OK/p3 ⊆ ...,
the ramification groups form a decreadng sequence G0 ⊇ G1 ⊇ G2 ⊇ ....

Because L/Q is a finite Galois extension, G is finite. We have a decreasing
sequence of subgroups of a finite group G, from which we can conclude that it must
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stabilize for some n. What we would like to do here is to show that Gn = 1 for
some n.

In order to do this, we need to know certain properties of valuations. Since we
have a dedekind domain, we can take the exponential valuation, νp for our map
from OK to R, which is given by

(α) =
∏
p

pνp(α)

where the product is taken over all nonzero prime ideals. Moreover, there exists
an element π ∈ OK such that νp(πi) = i for all i ∈ Z. In the completion of OK ,
every element can be uniquely written as an infinite sum of linear combinations of
πis. Because πn+1 ∈ pn+1, by passing to the quotient, every element in OK/p can
be expressed as a linear combinations of πis for i = 1, 2, .., n in the residue field
OK/pn+1.

Lemma 3. With π defined as above, for m = 1, 2, ...

Gm = {σ ∈ G|σ(π) ≡ π(mod pm+1)}

Proof. Clearly the left hand side of the equality is contained in the right hand side.
Thus, we need to show the other containment. Let α ∈ OK . Denote the fixed field
of Ip by T . There exit α0, α1, ..., αm ∈ OT such that

α ≡
n∑
i=0

αiπ
i(mod pn+1)

Now take σ ∈ Dp such that σ(π) = π (mod pn+1). Since σ acts trivially on OK/p,
σ acts trivially on elements of T , such as αis. Then we have

σ(α) ≡
n∑
i=0

αiσ(π)i ≡
n∑
i=0

αiπ
i ≡ α(mod pn+1)

.
�

Proposition 4. Gn = 1 for sufficiently large n.

Proof. Let σ ∈ Gm for all m = 1, 2, ... We want to show that such σ is the identity.
Since σ(π) ≡ π (mod pn+1) for all n, σ(π) = π. Because π is taken to be νp(π) = 1,
this imply that T (π) contains p, where T is again the fixed field of Ip. Thus the
ramification index of T (π)/T must be e, where we also know that K/T is of degree
e (discussed in class). Therefore T (π) = K. Because σ acts trivially on T and on
π, σ fixes every element of K. �

2. Example: The Cyclotomic Field (p = 7)

Now I would like to compute the decomposition groups, inertia groups and ram-
ification groups of the cyclotomic field K = Q(ζ7), which is a degree 6 extension of
Q, with the defining minimal polynomial (x7− 1)/(x− 1). The ring of integers OK
is given by Z[ζ7].

The galois group Gal(K/Q)is a cyclic group of order 6, with a generator (ζ7 →
(ζ7)3). Because it is cyclic, we can find Dp and Ip easily by the order of the
subgroup.
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sage: K.<a> = NumberField((x^7-1)/(x-1))

sage: I= K.fractional_ideal(2); I.factor()
(Fractional ideal (a^5 + a^4 + 1) of Number Field in a with ...) *
(Fractional ideal (a^3 + a^2 + 1) of Number Field in a with ...)

sage: I= K.fractional_ideal(3); I.factor()
Fractional ideal (3) of Number Field in a with defining ...

sage: I= K.fractional_ideal(5); I.factor()
Fractional ideal (5) of Number Field in a with defining ...

sage: I= K.fractional_ideal(7); I.factor()
(Fractional ideal (a^5 + a^4 + a^3 + a^2 + a + 2) of Number ...)^6

sage: I= K.fractional_ideal(11); I.factor()
(Fractional ideal (-2*a^4 - 2*a^2 - 2*a + 1) of Number Field ...) *
(Fractional ideal (2*a^5 + 2*a^4 + 3*a^3 + 2) of Number Field ...)

sage: I= K.fractional_ideal(13); I.factor()
(Fractional ideal (a^5 - a^4 - a^3 + a^2 + 1) of Number Field ...) *
(Fractional ideal (2*a^4 + a^3 + a^2 + 2*a) of Number Field ...) *
(Fractional ideal (a^5 + 2*a^4 + 2*a^3 + a^2 + 2) of Number ...)

sage: I= K.fractional_ideal(17); I.factor()
Fractional ideal (17) of Number Field in a with defining ...

sage: I= K.fractional_ideal(19); I.factor()
Fractional ideal (19) of Number Field in a with defining ...

sage: I= K.fractional_ideal(23); I.factor()
(Fractional ideal (-2*a^5 - 5*a^2 - 2*a - 2) of Number Field ...) *
(Fractional ideal (2*a^5 + 2*a^4 + 5*a^3 + 2) of Number Field...)

sage: I= K.fractional_ideal(29); I.factor()
(Fractional ideal (-a^5 - a^4 - 2*a^3 - a^2 - 1) of Number ...) *
(Fractional ideal (a^5 - a^4 + a) of Number Field in a with ...) *
(Fractional ideal (a^5 + a^4 + a^2 + a + 2) of Number Field ...) *
(Fractional ideal (-a^4 - a^3 - a^2 - a - 2) of Number Field ...) *
(Fractional ideal (a^3 + a^2 - a) of Number Field in a with ...) *
(Fractional ideal (-a^5 + a^3 - 1) of Number Field in a with ...)
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In this example, (7) is the only prime in Z that factors in OK to be have a
nontrivial inertia group. We would like to compute the series of ramification groups
for this p = (ζ5

7 + ζ4
7 + ζ3

7 + ζ2
7 + ζ7 + 2) over 7.

As we’ve shown in Lemma 3, we only have to check which galois element acts
trivially on π (mod pn+1), for π ∈ OK such that νp(π) = 1. Clearly we can take
π = ζ5

7 + ζ4
7 + ζ3

7 + ζ2
7 + ζ7 + 2, which is the generator of p itself. Also take the

generator of the galois group to be σ : ζ7 → (ζ7)3.
In the following computation, p = J , b = σ(π) − π, c = σ2(π) − π and d =

σ3(π)−π. I am examining whether those elements are in pn. If it is, then it means
that σ(π)i = π (mod pn) for i = 1, 2, 3. We have to check only for σi for i = 1, 2, 3,
since these are generators of all the subgroups, Z/6Z, Z/3Z and Z/2Z, respectively.

sage: J = (K.fractional_ideal(a^5 + a^4 + a^3 + a^2 + a + 2))

sage: b = (21*a^15 - 14*a^12 + 21*a^9 + 7*a^3 + 7)-(21*a^5 - 14*a^4 + 21*a^3 + 7*a + 7)
sage: b in J
True
sage: b in J^2
True
...
sage: b in J^7
True
sage: b in J^8
False

sage: c= (21*a^10 - 14*a^8 + 21*a^6 + 7*a^2 + 7)-(21*a^5 - 14*a^4 + 21*a^3 + 7*a + 7)
sage: c in J^7
True
sage: c in J^8
False

sage: d= (21*a^30 - 14*a^24 + 21*a^18 + 7*a^6 + 7)-(21*a^5 - 14*a^4 + 21*a^3 + 7*a + 7)
sage: d in J^7
True
sage: d in J^8
False

This shows that ramification groups Gm is the whole galois group for m =
0, 1, 2, ..., 6, and is trivial for m > 6.

G0 = (Z/7Z)× ⊇ (Z/7Z)× ⊇ (Z/7Z)× ⊇ (Z/7Z)× ⊇ (Z/7Z)× ⊇ (Z/7Z)× ⊇ (Z/7Z)× ⊇ {e} = G7

As we have observed above, 7 factors into a prime to the power of 6, creating
interesting sequence of ramification groups. This is in fact true for any prime p in
the cyclotomic extension by ζp, i.e., p always factor as a prime to the power of p-1
in OK [2].
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sage: K.<a> = NumberField((x^7-1)/(x-1))
sage: I= K.fractional_ideal(7); I.factor()
(Fractional ideal (a^5 + a^4 + a^3 + a^2 + a + 2) of Number ...)^6

sage: K.<a> = NumberField((x^13-1)/(x-1))
sage: I= K.fractional_ideal(13); I.factor()
(Fractional ideal (-a^4 + 1) of Number Field in a with ...)^12

sage: K.<a> = NumberField((x^19-1)/(x-1))
sage: I= K.fractional_ideal(19); I.factor()
(Fractional ideal (-a^15 + a^12) of Number Field in a ...)^18

Granting this fact, the next proposition follows easily by noting that the order
of Ip ⊂ Dp is e.

Proposition 5. For any prime p with the cyclotomic field Q(ζp), the decomposition
group and the inertia group of primes over p are always the Galois group itself.

By observing that the Gm for 7 in Q(ζ7) was the whole galois group for m =
1, 2, ...6, and trivial otherwise, we might want to guess that Gm is the whole galois
group for m = 1, 2, ..., p − 1 and trivial for m > 6. This is actually not true in
general. Consider the following counter-example when p = 5 with the generator of
the galois group (ζ5 → (ζ5)2).

sage: K.<a> = NumberField((x^5-1)/(x-1))

sage: I= K.fractional_ideal(5); I.factor()
(Fractional ideal (a^3 + 2*a^2 + a + 1) of Number Field in a ...)^4

sage: J = (K.fractional_ideal(a^3 + 2*a^2 + a + 1))

sage: b = (a^6 + 2*a^4 + a^2 + 1) - (a^3 + 2*a^2 + a + 1)
sage: b in J
True
sage: b in J^2
False

sage: c = (a^12 + 2*a^8 + a^4 + 1) - (a^3 + 2*a^2 + a + 1)
sage: c in J
True
sage: c in J^2
False

Therefore the series of ramification group for this case is:

Ip = (Z/5Z)× ⊇ {e} = G1
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