
MAXIMAL AND NON-MAXIMAL ORDERS

LUKE WOLCOTT

Abstract. In this paper we compare and contrast various prop-
erties of maximal and non-maximal orders in the ring of integers
of a number field.

1. Introduction

Let K be a number field, and let OK be its ring of integers. An order
in K is a subring R ⊆ OK such that OK/R is finite as a quotient of
abelian groups. From this definition, it’s clear that there is a unique
maximal order, namely OK . There are many properties that all orders
in K share, but there are also differences. The main difference between
a non-maximal order and the maximal order is that OK is integrally
closed, but every non-maximal order is not. The result is that many
of the nice properties of Dedekind domains do not hold in arbitrary
orders. First we describe properties common to both maximal and
non-maximal orders. In doing so, some useful results and constructions
given in class for OK are generalized to arbitrary orders. Then we de-
scribe a few important differences between maximal and non-maximal
orders, and give proofs or counterexamples. Several proofs covered in
lecture or the text will not be reproduced here. Throughout, all rings
are commutative with unity.

2. Common Properties

Proposition 2.1. The ring of integers OK of a number field K is a
Noetherian ring, a finitely generated Z-algebra, and a free abelian group
of rank n = [K : Q].

Proof: In class we showed that OK is a free abelian group of rank
n = [K : Q], and is a ring. Since Z is Noetherian, any Z-module
is Noetherian if and only if it is finitely generated. Because OK is
finitely generated as a Z-module, it is a Noetherian Z-module. Since
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1 ∈ OK , we have Z ⊆ OK , so OK is a finitely generated Z-algebra.
Since Z is a Noetherian ring, the Hilbert Basis Theorem implies that
the polynomial ring in n indeterminants Z[x1, ..., xn] is a Noetherian
ring. Because OK is the image of the surjective ring homomorphism
Z[x1, ..., xn] � OK sending the xi to the generators, it is a Noetherian
ring. �

Proposition 2.2. Every order R ⊆ OK is a Noetherian ring, a finitely
generated Z-algebra, and a free abelian group of rank n = [K : Q].

Proof: By definition R is a subring of OK . Since OK is a finitely
generated Z-module and Z is Noetherian, as a Z-submodule R is finitely
generated. Hence R is a Noetherian Z-module, and since Z ⊆ R it is a
finitely generated Z-algebra. The Hilbert Basis Theorem implies that
R is a Noetherian ring. Every subgroup of a free abelian group is free.
Since OK/R is finite, the ranks of OK and R are the same. �

As finitely generated Z-algebras, we can write every order in the form
Z[b1, ..., bk]. The following result is useful in finding all the orders in a
field.

Proposition 2.3. Let R ⊆ OK be an arbitrary order. There exist
generators a1, ..., ak ∈ K and integers n1, ..., nk ∈ Z\ {0}, satisfying
the property n1|n2| · · · |nk, such that

OK = Z[a1, ..., ak], and R = Z[n1a1, ..., nkak].

Proof: Suppose {1, α1, ..., αk} and {1, β1, ..., βk} are Z-bases for OK

and R, respectively, with k+1 = [K : Q]. The natural map φ : OK → R
given by 1 7→ 1 and αi 7→ βi can be represented by an n× n matrix in
Z. Using Smith Normal Form, by changing bases this matrix can be
made diagonal, with entries ni satisfying n1|n2| · · · |nk. All the ni are
nonzero, since OK/R is finite. Thus there is a basis {1, a1, ..., ak} for
OK such that R has a basis {1, n1a1, ..., nkak} for some such nonzero
ni ∈ Z. �

Note, however, that not everything of the form Z[b1, ..., bk] is an order.
For example, take K = Q( 4

√
−1) and consider Z[i]. We know that

OK is free of rank four and Z[i] is free of rank two. Although Z[i]
is a Noetherian subring and finitely generated Z-algebra, OK/R has a
torsion-free part so Z[i] is not an order. However, for the field L = Q(i)
it’s not hard to show that Z[i] is the maximal order in L.
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As another example, consider Z[ i
2
]. Since the minimal polynomial

for i
2

is 4x2 + 1, it is not an algebraic integer. Thus for every possible

field K we have i
2

/∈ OK = K ∩ Z.
In class we showed that OK may require arbitrarily many genera-

tors as a Z-algebra. The proof of this applies verbatim to arbitrary
orders R ⊆ OK . For example, the following code from Sage gives an
order that cannot be generated by fewer than four elements of the field.

sage: R.<x> = QQ[]

sage: f = x^5+x^4-60*x^3-12*x^2+784*x+128

sage: K.<a> = NumberField(f)

sage: OK = K.ring_of_integers()

sage: OK_gens = OK.gens()

sage: OK_gens

[1,

5/16*a^4 + 1/16*a^3 + 1/4*a,

1/32*a^4 + 3/32*a^3 + 1/16*a^2,

1/8*a^4 + 1/8*a^3, a^4]

sage: O = K.order(OK_gens[0], 2*(OK_gens[1]),

OK_gens[2], OK_gens[3])

sage: O.gens()

[1,

21/16*a^4 + 1/16*a^3 + 1/4*a,

1/32*a^4 + 3/32*a^3 + 1/16*a^2,

1/8*a^4 + 1/8*a^3, 2*a^4]

Proposition 2.4. Let R ⊆ OK be an arbitrary order. Then QOK =
QR = K.

Proof: In class we showed that QOK = K. Since R ⊆ OK , it’s
clear that QR ⊆ QOK . Using Proposition 2.3, write OK = Z[a1, ..., ak]
and R = Z[n1a1, ..., nkak] for some ai ∈ K and ni ∈ Z\ {0}. Then
ai = 1

ni
(niai) ∈ QR for all i, so OK ⊆ QR. This implies QOK ⊆ QR,

and QR = QOK = K. �

Corollary 2.5. Every order is a lattice.

As a result, there are many constructions that work equally well for
maximal and non-maximal orders. For example, we have the discrimi-
nant of an arbitrary order, and the volume of its lattice. For an ideal
of an arbitrary order, I ⊆ R, we can define the norm of I in R to be
the lattice index [R : I].
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Proposition 2.6. Let R ⊆ OK be an arbitrary order. Then Frac(R) =
Frac(OK) = K, where Frac denotes the field of fractions of a ring.

Proof: For any x ∈ K = QR, we have x = qy for some q ∈ Q and
y ∈ R. Write q = a

b
, with a, b ∈ Z and b 6= 0. Then a ∈ Z ⊆ R, so

ay ∈ R. Since b ∈ Z ⊆ R and b 6= 0, we have x = ay
b
∈ Frac(R), so

K ⊆ Frac(R).
Conversely, take x ∈ Frac(R). Then x = a

b
for a, b ∈ R ⊆ K,

with b 6= 0. Thus x = a
b
∈ K. This shows that Frac(R) ⊆ K, and

Frac(R) = K. �

Recall that an integral domain D is called integrally closed if whenever
α ∈ Frac(D) satisfies a monic polynomial in D[x], then α ∈ D. A
Dedekind domain is an integral domain that is Noetherian and inte-
grally closed, such that every nonzero prime ideal is maximal.

Proposition 2.7. Let R ⊆ OK be an arbitrary order. Then R is an
integral domain that is Noetherian, such that every nonzero prime ideal
is maximal.

Proof: Since R ⊆ K, it is an integral domain. We showed in Propo-
sition 2.2 that R is Noetherian. Suppose p ⊆ R ⊆ OK is a nonzero
prime ideal, and let a ∈ p be a nonzero element. Let f(x) ∈ Z[x] be
the monic minimal polynomial of a. Then for some ci ∈ Z we can write
f(x) = xn + cn−1x

n−1 + · · · + c1x + c0, and c0 6= 0 since f is minimal.
Thus we have

0 = f(a) = an + cn−1a
n−1 + · · ·+ c1a + c0, and

an + cn−1a
n−1 + · · ·+ c1a = −c0.

This shows that −c0 ∈ p. The quotient OK/p is a finitely generated
Z-module such that c0(OK/p) = 0, so OK/p is a finite abelian group.
Since p is prime, OK/p is an integral domain. Since every finite integral
domain is a field, p must be maximal. �

3. Differences

Proposition 3.1. The maximal order OK is integrally closed, and thus
is a Dedekind domain.

Proof: Take α ∈ Frac(OK) = K such that α satisfies a monic
polynomial in OK [x]. For a fixed choice of algebraic closure, we can
embed K ↪→ Q and OK ↪→ Z. Thus α ∈ Q = Frac(Z), and satisfies
a monic polynomial f(x) ∈ Z[x]. Because Z is integrally closed, this
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implies that α ∈ Z. Therefore α ∈ K ∩ Z = OK , proving that OK

is integrally closed. Combining this with Proposition 2.7, we get that
OK is a Dedekind domain. �

Proposition 3.2. Let R ( OK be a non-maximal order. Then R is
not integrally closed, and therefore is not a Dedekind domain.

Proof: Because R ( OK , there is some β ∈ OK , β /∈ R. Note that
β ∈ OK ⊆ Frac(OK) = Frac(R). Since β is an algebraic integer, it
satisfies a monic polynomial g(x) ∈ Z[x] ⊆ R[x]. That β /∈ R shows
that R is not integrally closed. �

Given a (Noetherian) ring R, the ideals of R are the (finitely gener-
ated) R-modules contained in R. We generalize this notion to that of
a fractional ideal, a finitely generated nonzero R-module contained in
Frac(R). In class we defined fractional ideals only for Dedekind do-
mains such as OK , but the definition can be applied to arbitrary orders.
The reason we looked only at fractional ideals in Dedekind domains is
in that case we could prove the following nice result.

Proposition 3.3. The set of fractional ideals in a Dedekind domain
(e.g the maximal order OK) form an abelian group under ideal multi-
plication.

However, non-maximal orders are not Dedekind domains, so we have
the following.

Proposition 3.4. There exists a field K with a non-maximal order
R ( OK such that not every fractional ideal of R has an inverse, so
the set of fractional ideals of R does not form a group.

Proof: In fact, it can be shown ([2]), using Discrete Valuation Rings,
that a ring is a Dedekind domain if and only if every nonzero fractional
ideal is invertible. Thus every non-maximal order has a fractional ideal
that is not invertible. Here we give one example.

Suppose I is a fractional ideal of an order R, and define

J = {α ∈ Frac(R) : αI ⊆ R} .

Then if I is invertible, we must have I−1 = J . To see this, suppose I
is invertible, and AI = R for some fractional ideal A. Then A ⊆ J by
definition of J . Therefore we have R = AI ⊆ JI ⊆ R, which implies
JI = R.
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Let K = Q(
√

34), and note that 34 ≡ 2(mod 4) implies OK =
Z[
√

34]. Consider the order R = Z[3
√

34] ( OK .
For α, β ∈ K, let [α, β] denote the free abelian group αZ ⊕ βZ. It

can be shown ([5]) that for an arbitrary order R in a quadratic field,

with a, b + c
√

D ∈ R, the group [a, b + c
√

D] is an ideal of R if and

only if the following hold: c|a, c|b, and ac|Norm(b + c
√

D).
Therefore we have an ideal I = [9, 15 + 3

√
34] ⊆ R. A computation

shows that J = {α ∈ Frac(R) : αI ⊆ R} =
(

1
9

)
[9, 15 − 3

√
34]. As

noted above, if I is invertible then I−1 = J . But another computation
shows that IJ = [3, 3

√
34] 6= R. Thus the ideal I is not invertible. �

It is the case that every nonzero principal fractional ideal is invertible.
To see this, let (a) = I be a nonzero principal fractional ideal of an
arbitrary order R = Z[a1, ..., ak]. Then I = aZ[a1, ..., ak], and it’s clear
that J = 1

a
Z[a1, ..., ak] is a finitely generated R-module contained in

Frac(R), with IJ = R.
For an order R ⊆ OK , let I(R) be the set of nonzero invertible

fractional ideals. Then I(R) does form an abelian group under ideal
multiplication. Because of this, we can generalize our definition of
the class group to arbitrary orders. Let P(R) be the set of nonzero
principal fractional ideals. Then P(R) is a subgroup of I(R), and we
can define the class group of R to be the quotient group I(R)/P(R).

In this way, much of the theory of the class group can be extended
and generalized.

The following important result for maximal orders, proved in class,
does not carry over to non-maximal orders.

Proposition 3.5. In a Dedekind domain (e.g. the maximal order OK),
every nonzero ideal factors uniquely into a product of prime ideals.

Proposition 3.6. Let R ( OK be a non-maximal order. Then in
general, unique factorization of nonzero ideals into prime ideals fails.

Proof: We will use the fact, noted above and proved in [2], that R
is a Dedekind domain if and only if every fractional ideal is invertible.

Suppose to the contrary that R is such that every fractional ideal
factors uniquely into a product of prime ideals. If I is a fractional ideal,
we can write I = p1p2 · · · pn for some prime ideals pi.

Next we show that in this case every nonzero prime ideal is invertible.
If p is a prime ideal, let a ∈ p be some nonzero element. By assumption,
(a) = q1 · · · qk for some prime ideals qi. Then q1(

1
a
q2 · · · qk) = R, so q1
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is invertible, and similarly each qi is invertible, with

q−1
i =

1

a
q1 · · · qi−1qi+1 · · · qk.

Now q1 · · · qk = (a) ⊆ p. If for all i we have qi * p, then there are
elements ci ∈ qi, ci /∈ p, such that c1c2 · · · ck ∈ p. But p is a prime ideal,
so this is not possible. Therefore, for some i we have qi ⊆ p. Since
every nonzero prime ideal is maximal, we must have qi = p. Thus p is
invertible.

Since every prime ideal is invertible, we have I−1 = p−1
n · · · p−1

2 p−1
1 .

This implies that every fractional ideal is invertible, so R is a Dedekind
domain. This contradicts the fact that the non-maximal orders are not
Dedekind domains. Therefore unique factorization must fail in non-
maximal orders. �

Unique factorization of ideals in OK allowed us to prove the following
result on ideals in OK , which does not apply to arbitrary orders.

Proposition 3.7. Any ideal I ⊆ OK is generated as a ring by one or
two elements.

Proposition 3.8. There exists a field K with a non-maximal order
R ( OK, and an ideal J ⊂ R such that J requires more than two
generators.

Proof: Let K = Q(
√

2, 3
√

2, 5
√

2), and consider the subring

R = Z[
√

2,
3
√

2,
5
√

2] ⊆ OK .

Note that [K : Q] = 30, and write α =
√

2, β = 3
√

2, and γ = 5
√

2.
The set

{
αaβbγc : a = 0, 1; b = 0, 1, 2; c = 0, 1, 2, 3, 4

}
is a Z-basis for

R and has 30 distinct linearly independent elements, as can be verified
by computing all the elements via

αaβbγc = 2
15a
30 2

10b
30 2

6c
30 = 2

15a+10b+6c
30 .

Therefore R is free abelian of rank 30, so OK/R is finite and R is in
fact an order.

Now consider the ideal I = (
√

2, 3
√

2, 5
√

2) ⊆ R. Suppose to the
contrary that I = (a, b) for some a, b ∈ R. Write a = a0 + a12

15/30 +
a22

10/30 + a32
6/30 and b = b0 + b12

15/30 + b22
10/30 + b32

6/30, for some
ai, bi ∈ Z. Then 26/30 ∈ I implies there exist r1, r2 ∈ R such that
26/30 = r1a + r2b. A little thought shows that this is only possible if
either a or b is 26/30, since by multiplying and distributing fractional
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powers of two all the exponents will only increase. Without loss of
generality, we have a = 26/30.

Likewise, the fact that 210/30 ∈ I implies there are r1, r2 ∈ R such
that 210/30 = r12

6/30 + r2b. But this is only possible if b = 210/30. Thus
we have I = (26/30, 210/30). However, 215/30 = r12

6/30 + r22
10/30 has no

solutions r1, r2 ∈ R, so 215/30 /∈ I, a contradiction. This shows that the
ideal I = (

√
2, 3
√

2, 5
√

2) requires at least three ring generators. �

4. Conclusion and Questions

These are a few of the major differences between maximal and non-
maximal orders. Clearly, most of the differences result from the fact
that maximal orders are always Dedekind domains and non-maximal
domains are never. However, many constructions originally given for
rings of integers, such as the class group, can be extended to the case
of arbitrary orders.

At first it seems every non-maximal order has a similar structure, but
perhaps its possible to study them further. For example, what does the
group of invertible fractional ideals I(R) tell us about a non-maximal
order? How do the generalized class groups of arbitrary orders compare
to each other, and what do they tell us about the class group Cl(K)?

We could look at orders of orders, and there may be interesting
structure there, particularly as they relate geometrically to real lattices.
Finally, each non-maximal order, while not integrally closed, does have
an integral closure contained in the ring of integers. Perhaps it would
be interesting to study the interplay between non-maximal orders, their
integral closures, and the maximal order.

On a practical note, Sage currently doesn’t have much computational
functionality with non-maximal orders. Implementing this would do
much towards elucidating the relationship between maximal and non-
maximal orders.
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