
Enumeration of Number Fields

John Voight
University of Vermont

Department Colloquium
University of Washington

19 February 2008

Abstract
How quickly can one enumerate number fields of fixed degree with bounded

absolute discriminant? We discuss some mathematically and computationally

interesting aspects of this question. For totally real number fields, a particular case

of interest, we exhibit an algorithm which improves upon known methods by the

use of elementary calculus (Rolle’s theorem and Lagrange multipliers).

1

Problem

Today, we will be concerned with the following problem.

Problem. Let B,n ∈ Z>0. Compute the set NF (n,B) of all number
fields F of degree n = [F : Q] with absolute discriminant |dF | ≤ B, up to
isomorphism.

The set NF (n,B) is finite, as we shall see shortly.

(Number fields are represented in the usual way by a minimal polynomial
of a primitive element, which is represented by a sequence of rational
numbers.)

We consider this an algorithmic problem: we are interested in not only its
theoretical complexity but also desire a practical program which takes as
input the integers n,B and outputs the list of fields NF (n,B).

2

Motivation

Problem. For B,n ∈ Z>0, compute

NF (n,B) = {F : [F : Q] = n, |dF | ≤ B}.

This very basic problem arises very naturally.

Number fields are the raw material of number theory, and tables are useful
to the extent that one views the subject as an experimental science. And
indeed, there are still many mysteries to unfold!

My particular interest comes from arithmetic geometry, and the enumeration
of Shimura curves of genus at most two.

But you might be interested for your own reasons!

3

Example

Example. If n = 2, then we are listing quadratic fields Q(
√
d) (equivalently,

polynomials x2 − d) of discriminant d with |d| ≤ B.

Of course, 0, 1 6= d ∈ Z is a such a discriminant if and only if

d ≡ 0, 1 (mod 4) and
d

gcd(4, d)
is squarefree.

Therefore,

NF (n,B) = {Q(
√
d) : d ≡ 2, 3 (mod 4), d squarefree, 4d ≤ B}

∪ {Q(
√
d) : d ≡ 1 (mod 4), d squarefree, d ≤ B}.

Hence

#NF (n,B) ∼ 2 · 6
π2

(
2
3
· B

4
+

1
3
·B
)
∼ 6
π2
B, as B →∞.

4

Problem, revisited

One may be also interested in specifying the signature sig(F) = (r1, r2) of
F , where r1, r2 as usual denote the number of real, complex places of F
(with r1 + 2r2 = n).

Problem. For B,n ∈ Z>0, compute

NF (n,B, σ) = {F : [F : Q] = n, sig(F) = σ, |dF | ≤ B}.

Analogously, one may also wish to specify the Qp-isomorphism class of the
completion Fp for a finite set of primes p, or perhaps some aspect of the
ramification or splitting behavior of p in F .

One may be interested in computing all number fields with bounded root
discriminant δF = |dF |1/[F :Q] ≤ b (for b small enough to apply the Odlyzko
bounds). Lastly, one may replace Q by an alternative base field E.

Our interest will be in totally real fields, i.e. sig(F) = (n, 0). Live demo!

5

Some previous work

• There are databases of number fields computed by the KASH group and
the Pari group. These tables contain fields of all signatures with n ≤ 7
and varying discriminant bound B. (In our application, we need n up to
10 and larger values of B.)

• Klüners and Malle have created a database for number fields, containing
representative polynomials for all transitive Galois groups up to degree
15. (This is in a different spirit.)

• For small degrees, we have fast algorithms: Belabas (following Davenport-
Heilbronn) has given a quasi-linear time algorithm for cubic fields; Cohen-
Diaz y Diaz-Olivier use Kummer theory for quartic fields.

• A smattering of results (up to degree n = 9) list fields of a given
degree and signature with smallest discriminant. For other small degrees
(quintics, impritive sextics, ...), the construction of tables is described.

Many of these results and tables are at least ten years old!

6

General strategy

The general strategy to compute NF (n,B) is well-known, and runs as
follows. Throughout, let F be a number field with [F : Q] = n, and let ZF
denote its ring of integers.

We use the geometry of numbers. We define the Minkowski norm

T2 : F → R

α 7→ T2(α) =
n∑
i=1

|σi(α)|2 =
n∑
i=1

|αi|2

where σi runs over the infinite places of F (equivalently, αi = σi(α) ∈ C
runs over the conjugates of α).

The norm T2 gives ZF the structure of a lattice of rank n with covolume
(or determinant)

√
|dF |.

7

General strategy

ZF is a lattice of rank n under the T2-norm, with determinant
√
|dF |. A

shortest lattice vector in ZF is 1, and the sublattice Z ⊂ ZF is pure so
we may consider the quotient lattice ZF/Z. An application of Minkowski’s
theorem then yields the following result (known as Hunter’s theorem).

Proposition. There exists α ∈ ZF \ Z such that 0 ≤ Tr(α) ≤ n/2 and

T2(α) ≤ Tr(α)2

n
+ γn−1

(
|dF |
n

)1/(n−1)

where γn−1 denotes the (n− 1)st Hermite constant.

The Hermite constant measures “the densest lattice” in Rn, defined by

γn = max
L⊂Rn

det(L)=1

min
0 6=v∈L

||v||.

We know the values γnn = 1, 4/3, 2, 4, 8, 64/3, 64, 256 for n = 1, . . . , 8,
given by the lattices A1, A2, A3, D4, D5, E6, E7, E8, respectively. The value
of γ24 = 4 is given by the Leech lattice (Cohn-Kumar) and the best known
upper bounds for γn are given by Cohn-Elkies.

8

General strategy

From Hunter’s theorem, if F ∈ NF (n,B), then one finds α ∈ ZF \ Z such
that T2(α) =

∑
i |αi|2 ≤ C for some C ∈ R>0 depending only on n,B.

Hence we obtain bounds on the power sums

|Sk(α)| =
∣∣∑n

i=1α
k
i

∣∣ ≤ Tk(α) =
∑n
i=1 |αi|k ≤ nCk/2,

hence bounds on the coefficients ai ∈ Z of the characteristic polynomial of
α

f(x) = xn + an−1x
n−1 + · · ·+ a0 =

∏n
i=1(x− αi)

by Newton’s relations:

Sk +
∑k−1
i=1 an−iSk−i + kan−k = 0.

This yields a finite set NS(n,B) of possible f(x) ∈ Z[x].

If F is imprimitive, we may have Q ⊂ Q(α) (F for α as given by Hunter’s
theorem. Using a relative version of Hunter’s theorem (Martinet), one can
proceed in an analogous manner.

9

Size of NS(n,B)

We have Sk(α) =
∑n
i=1α

k
i and the Newton relations

Sk +
∑k−1
i=1 an−k+iSi + kan−k = 0

so that S1, . . . , Sk determine an−k. A little work yields |Sk(α)| ≤ Ck/2.

Two other small improvements. An application of the arithmetic-geometric
mean gives |a0| = |NF/Q(α)| ≤ (C/n)n/2. Next, according to the Newton
relations we see that the value of Sk is determined modulo k by S1, . . . , Sk−1,
hence there are at most

(
2Ck/2 + 1

)
/k values of Sk. In sum, we have

#NS(n,B) = O
(
n
2

(
2C
2

)
· · ·
(
2C(n−1)/2

n−1

)(
C
n

)n/2)
= O

(
2n

n(n−2)/2(n−1)!
C(n−1)(n+2)/4

)
= O

((
2e
n7/4

)n
B(n+2)/4

)
since C = Tr(α)2

n + γn−1

(
|dF |
n

)1/(n−1)

= O
((

B
n

)1/(n−1)
)

.

Note the size of NS(n,B) is sharp for n = 2: we saw that #NF (n,B) ∼
6
π2B for B →∞.

10

Conjectural size of NF (n,B)

In summary: To compute NF (n,B), we enumerate polynomials over a
set NS(n,B) which is of size O(B(n+2)/4). What is the expected size
of the output? We have the following folklore conjecture, which has been
attributed to Linnik.

Conjecture. For any n ∈ Z>0 and signature σ = (r1, r2), there exists
cn,σ ∈ R>0 such that

#NF (n,B, σ) ∼ cn,σB.

(One can also specify p-adic data and one makes a similar conjecture, or
consider extensions of a fixed ground field E.)

This conjecture has been proven for n = 3 (Davenport-Heilbronn) and
for n = 4, 5 (Bhargava). If one believes this conjecture, then the näıve
algorithm runs in exponential time (as a function of n). For large n,

the best known result is that #NF (n,B) = O
(
Bexp(C

√
logn)

)
for some

absolute constant C. This result may never in practice outperform the näıve
method...? So for higher (intermediate) degrees, we seek to chip away at
the implied constant.

11

Totally real fields: Bounds from Hunter’s theorem

We now restrict to the case where F is primitive and totally real. We have,
by Hunter’s theorem, that

−
⌊n
2

⌋
≤ an−1 = −Tr(α) ≤ 0

and combining Newton’s relations with the fact that

S2(α) =
∑
iα

2
i =

∑
i |αi|2 = T2(α)

we obtain the lower bound

an−2 =
1
2
a2
n−1 −

1
2
T2(α) ≥ 1

2

(
1− 1

n

)
a2
n−1 −

γn−1

2

(
B

n

)1/(n−1)

.

We next need a good upper bound on an−2.

12

Totally real fields: Upper bounds for an−2

To find an upper bound for an−2, we note that T2(α) = Tr(α2) and that
α2 is a totally positive algebraic integer.

Theorem (Smyth). If θ is a totally positive algebraic integer, then

Tr(θ) > 1.7719[Q(θ) : Q]

unless θ is a root of one of the following polynomials:

x− 1, x2 − 3x+ 1, x3 − 5x2 + 6x− 1,
x4 − 7x3 + 13x2 − 7x+ 1, x4 − 7x3 + 14x2 − 8x+ 1.

(N.B. δ = (3±
√

5)/2 are the roots of the second polynomial; 2 cos(2π/7)+2
and its conjugates are the roots of third; and the latter are quadratic
extensions of Q(δ).)

We conclude that (aside from these cases)

an−2 <
1
2a

2
n−1 − 0.88595n.

13

Totally real fields: Rolle’s theorem

Now, given values for an−1, an−2, . . . , an−k, we deduce bounds for an−k−1.

Let fk(x) =
f (n−k)(x)
(n− k)!

= gk(x) + an−k. Consider for illustration the case

k = 3. Then

g3(x) = n(n−1)(n−2)
6 x3 + (n−1)(n−2)

2 an−1x
2 + (n− 2)an−2x.

Let β1 < β2 denote the roots of f2(x).

Thus

f3(β1) = g3(β1) + an−3 > 0

f3(β2) = g3(β2) + an−3 < 0

hence −g3(β1) < an−3 < −g3(β2).

14

Totally real fields: Rolle’s theorem

To obtain these bounds, we have applied Rolle’s theorem, in the following
form: If g(x) ∈ R[x] has distinct real roots, then the roots of g′(x) are
distinct and are interlaced with those of g(x).

(The replacement when R = C is the Gauss-Lucas theorem, which states
that the roots of g′(x) lie in the convex hull of the set of roots of g(x).
There is a weak p-adic replacement as well.)

In a similar way, if β1 < · · · < βk−1 denote the roots of fk−1(x), then we
find that

max
1≤i≤k−1
i≡k (2)

−gk(βi) < an−k < min
1≤i≤k−1
i6≡k (2)

−gk(βi).

Computing these bounds requires a computation of real roots. By far, the
fastest algorithm is to use Newton’s method, since we have an interval
where the root can lie. For our application, we need only a few significant
digits (4 or 6 suffice), and then careful treatment of round-off error!

15

Totally real fields: Lagrange multipliers

We can obtain further bounds as follows. Let S denote the set of all totally
real polynomials f(x) ∈ R[x] with specified coefficients an−1, . . . , an−k−1

with k ≥ 3. Note that since the roots of such f are bounded, the set
S ⊂ Rn is closed and bounded, and hence there exists an f with the largest
(resp. smallest) possible root, denoted βk (resp. β0).

Then fk(βk) = gk(βk) + an−k > 0 with a similar inequality for β0.

These combine with the above to yield neatly:

max
0≤i≤k
i≡k (2)

−gk(βi) < an−k < min
0≤i≤k
i6≡k (2)

−gk(βi).

16

Totally real fields: Lagrange multipliers

One can compute the largest (resp. smallest) root βk (resp. β0) by an
application of Lagrange multipliers.

We solve the following problem: Maximize αn subject to

Si(α) =
∑n
i=1αi = si

for i = 1, . . . , k − 1.

By the method of Lagrange multipliers, we find easily that if (αi)ni=1 ∈ Rn
yields such a maximum (resp. minimum), then there are at most k − 2
distinct values among α1, . . . , αn.

For example, in the case k = 3, we must solve the equations

(n−1)α1+αn = s1 = −an−1 and (n−1)α2
1+α2

n = s2 = a2
n−1−2an−2

which yields simply

β0, β3 = −an−1

n
∓ n− 1

n

√
a2
n−1 − 2

(
1 +

1
n− 1

)
an−2.

17

Totally real fields: Lagrange multipliers

Maximize αn subject to Si(α) = si for i = 1, . . . , k − 1: there are at most
k − 2 distinct values among α1, . . . , αn.

For k = 4, for each partition r + s = n − 1, one obtains a system of
equations which via elimination theory yield a (quite lengthy) degree 6
equation for αn. For k ≥ 5, we can continue in this way but instead must
solve the system numerically; in practice, we do not significantly improve
on the bounds for β0, βk whenever k ≥ 6.

The method of Lagrange multipliers originates with Pohst and applies to
all signatures in a different form. The combined Rolle’s theorem-Lagrange
multiplier bounds are by far the best available in the case of totally real
fields, in our experience.

18

Implementation: Some issues

Speed: Speed is of the absolute essence—we are doing basic operations
zillions of times. Maple and Mathematica cannot compete for this reason.

Number field arithmetic: Bare C lacks number field arithmetic. Pari and
Magma (based on KANT) do: For “large examples”, Magma is by far the
quickest (in our experience). However, in our situation, our polynomials
are small and both systems have highly optimized algorithms for testing
irreducibility and computing p-maximal orders.

Real root finding: Magma also has amazingly fast real root finding; it is,
however, a black box, and there is no fast Newton’s method! Pari only
computes real roots and lets you to guess if a root is real or not.

Optimized code: So it is up to us to implement a lightning fast Newton’s
method! One can work with the Pari library in C to write optimized code.
In Magma, one cannot do this very easily without traveling to Sydney!

Cost: Magma is not free, hence not on UVM machines. Pari is free.

Intuitive: Pari can often be counterintuitive to use and to program.

19

Implementation: Sage

Having seemingly eliminated every alternative, we turn to Sage.

Sage includes Pari, so it has number field arithmetic. It uses Python, which
is a very friendly modern (object-oriented) programming language. It is
free. It incorporates Cython (Behnel-Bradshaw-Stein), which easily allows
one to write optimized C code for repeated tasks.

Despite being a relatively new system (so that some functionality is limited),
since Sage is open source it is easy to contribute yourself! Even though
one must think about issues like how best to coerce between a C int, a
Python integer, and a Sage Integer, there is a very active and generous
development community willing to help!

It has the further advantage that there is a package for distributed computing
called DSage (Qiang). Since the problem of computing NF (n,B) is proudly
parallelizable, a distributed computation on 30 Windows machines in a lab
at UVM using DSage is currently underway (at night and on weekends!).

20

Data: Comparisons

We performed further tests on sage.math.washington.edu. We
computed #NF (6, 156, (6, 0)) = 458 in Magma, Pari, and Sage. The
Sage code, which has seen the most optimization, runs in time 5m5s. The
Magma code was not optimized any further after we discovered the real
roots issue, so this is not a fair comparison: we aborted it after a half
hour. The Pari code (run from GP—running it from gp2c did not give any
significant advantage), ran in time 16m9s, a similarly unfair comparison.

We can recreate the list of 154 totally real fields in NF (7, 150 · 106, (7, 0)),
which appears in the tables of the KASH group, in just 44m51s.

For nonic fields, for comparison purposes we computed the 2 primitive
totally real fields in NF (9, 12 · 109, (9, 0)) in about a day and a half.
This compares well to the previous computation of these fields (Takeuchi),
which was reported to take one and a half months (in 1999)! Even this
computation took only an hour when distributed!

21

Thanks!

Thanks to: Jürgen Klüners, Noam Elkies, Claus Fieker, and David Dummit
for useful discussions; William Stein, Robert Bradshaw, Craig Citro, Yi
Qiang, and the rest of the Sage development team for computational
support; and Larry Kost and Helen Read for their technical assistance in
the UVM lab.

And thank you for your attention!

