Introduction Variations of Kamienny's Criterion Results of testing the criterion Summary

Torsion points on elliptic curves over number fields of small degree.

Several variations of kamienny's criterion

Maarten Derickx

Mathematisch Instituut Universiteit Leiden

UW Number Theory Seminar 18-03-2011

Outline

- Introduction
- Variations of Kamienny's Criterion
 - The Original Version
 - My version
 - Parent's version
- Results of testing the criterion

What is known

$$S(d) = \left\{ p \text{ prime } | \exists K \stackrel{d}{\supseteq} \mathbb{Q} \exists E/K : E(K) [p] \neq 0 \right\}$$

$$Primes(n) = \left\{ p \text{ prime } | p \leq n \right\}$$

Summary

- S(d) is finite (Merel)
- S(d) ⊂ Primes((3^{d/2} + 1)²) (Oesterlé)
- S(1) = Primes(7) (Mazur)
- S(2) = Primes(13) (Kamienny, Kenku, Momose)
- S(3) = Primes(13) (Parent)
- S(4) = Primes(17) (Kamienny, Stein, Stoll) to be published.

Reduce to Multiplicative Reduction

Let $\mathbb{Q} \overset{a}{\subset} K$ be a field extension, E/K an elliptic curve, I a prime $m \subseteq O_K$ a max. ideal lying over I with res. field \mathbb{F}_q , $P \in E(K)$ of order p and \tilde{E} the fiber over \mathbb{F}_q of the Néron model. If $p \nmid q$ then $\tilde{P} \in \tilde{E} (\mathbb{F}_q)$ has order p. Consider the three cases:

- Good reduction: $p \le \# \stackrel{\sim}{E} (\mathbb{F}_q) \le (q^{\frac{1}{2}} + 1)^2 \le (I^{d/2} + 1)^2$
- Additive reduction: $0 \to G_{a,\mathbb{F}_q} \to \stackrel{\sim}{E} \to \Phi \to 0$ hence $p \mid \#\Phi(F_q) \le 4 < (I^{d/2} + 1)^2$
- Multiplicative reduction: $0 \to T \to \stackrel{\sim}{E} \to \Phi \to 0$ with $T = G_{m,\mathbb{F}_q}$ or $T = \stackrel{\sim}{G}_{m,\mathbb{F}_q}$. Hence $p \mid q-1$, $p \mid q+1$ or $p \mid \#\Phi(F_q)$

Conclusion: $(I^{d/2} + 1)^2$ is a bound for the torsion order in the good and the additive case.

What happens in the multiplicative case

Let $x \in X_0(p)$ and $\sigma_1, \ldots, \sigma_d$ be all embeddings of K in $\mathbb C$. Then $x^{(d)} := [(\sigma_1(x), \ldots, \sigma_d(x))] \in X_0(p)^{(d)}(\mathbb Q)$. If $s' = (E, \langle P \rangle) \in X_0(p)(K)$ and E has multiplicative reduction at all primes over I and $\stackrel{\sim}{P}$ has nonzero image in Φ then all specializations of s' to characteristic I are the cusp 0. Define $s = (E/\langle P \rangle, E[p]/\langle P \rangle)$ then all specializations of s to characteristic P are ∞ . This proves:

Proposition

If
$$p \nmid l^k + 1$$
, $p \nmid l^k - 1$ for all $k \leq d$ then $\mathbf{s}_{\mathbb{F}_l}^{(d)} = \infty_{\mathbb{F}_l}^{(d)}$.

In the rest of the talk we study $s \neq \infty \in X_0(p)$ such that $s_{\mathbb{F}_I}^{(d)} = \infty_{\mathbb{F}_I}^{(d)}$. (and try to prove that no such s exist for certain p).

Mazur's approach

Derive a contradiction with formal immersions in the multiplicative case

Summary

A morphism $f: X \to Y$ of noetherian schemes is a formal immersion at $x \in X$ if $\widehat{f}: \widehat{O_{Y,f(x)}} \to \widehat{O_{X,x}}$ is surjective. Or equivalently k(x) = k(f(x)) and $f^*: \operatorname{Cot}_{f(x)} Y \to \operatorname{Cot}_x X$ is surjective.

Lemma (Mazur)

Let A be the Néron model over $\mathbb{Z}_{(I)}$ of an abelian variety over \mathbb{Q} . Suppose there is a morphism $f: X_0(p)^{(d)} \to A$ normalized by $f(\infty^{(d)}) = 0$. If $s \neq \infty \in X_0(p)$, $s_{\mathbb{F}_I}^{(d)} = \infty_{\mathbb{F}_I}^{(d)}$ and

$$f(s^{(d)}) = 0 \tag{H}$$

then f is not a formal immersion at $\infty_{\mathbb{F}_t}^{(d)}$

If $A(\mathbb{Q})$ has rank 0, use the following lemma to satisfy **H**

Lemma

If l>2 prime and A a $\mathbb{Z}_{(l)}$ group scheme with identity e. If also $P\in A$ is a $\mathbb{Z}_{(l)}$ valued torsion s.t. $P_{\mathbb{F}_l}=e_{\mathbb{F}_l}$ then P=e.

This is enough since
$$\infty_{\mathbb{F}_I}^{(d)} = s_{\mathbb{F}_I}^{(d)}$$
 implies $e_{\mathbb{F}_I} = f(\infty^{(d)})_{\mathbb{F}_I} = f(s^{(d)})_{\mathbb{F}_I} \in A_{\mathbb{F}_I}$.

Winding quotient

The "largest" rank 0 quotient of $J_0(p)$

Definition (winding element)

The winding element $e \in H_1(X_0(p)(\mathbb{C}), \mathbb{Q})$ is the one corresponding to $\omega \mapsto \int_0^{i\infty} \omega \in H^0(X_0(p), \Omega)^{\vee}$

Definition (winding quotient)

Let $A_e \subseteq \mathbb{T}$ be the annihilator of e then $J_e(p) = J_0(p)/A_eJ_0(p)$ is called the winding quotient.

This definition can also be made over $X_1(p)$, in both cases $J_e(\mathbb{Q})$ has rank zero as a result of Kato's theorem.

Kamienny's Criterion

The original case: $X_0(p)$ and $l \neq 2, p$

Theorem (Kamienny)

Let $l \neq 2$, p be a prime and $f: X_0(p)^{(d)} \to J_e(p)$ be the canonical map normalized by $f(\infty^{(d)}) = 0$ then f is a formal immersion at $\infty^{(d)}_{\mathbb{F}_l}$ if and only if $\overline{T_1}, \ldots, \overline{T_d}$ are \mathbb{F}_l linearly independent in $\mathbb{T}/(l\mathbb{T} + A_e)$.

Corollary

If $p > (I^{d/2} + 1)^2$ and $\overline{T_1}, \dots, \overline{T_d}$ are \mathbb{F}_I linearly independent in $\mathbb{T}/(I\mathbb{T} + A_e)$. Then $p \notin S(d)$.

What goes wrong at 2

Point orders don't always stay the same under reduction

Need again a lemma to satisfy (1)

Lemma

If I=2 and A a $\mathbb{Z}_{(I)}$ group scheme with identity e. If also $P\in A$ is a $\mathbb{Z}_{(I)}$ valued torsion s.t. $P_{\mathbb{F}_I}=e_{\mathbb{F}_I}$ then P=e or P generates a $\mu_{2,\mathbb{Z}_{(I)}}$ immersion.

So we need to kill all the 2 torsion:

Proposition

If $q \neq p$ prime. Then $T_q - q - 1$ kills all the \mathbb{Q} -rational torsion of $J_0(p)$ of order co prime to pq.

What goes wrong at 2 Kamienny's criterion doesn't work.

The criterion is proved by calculating when the composition

$$\operatorname{\mathsf{Cot}}_0 J_e(p)_{\mathbb{F}_I} o \operatorname{\mathsf{Cot}}_0 J_0(p)_{\mathbb{F}_I} o \operatorname{\mathsf{Cot}}_{\infty^{(d)}_{\mathbb{F}_I}} X_0(p)^{(d)}_{\mathbb{F}_I}$$

is surjective and then translate this to the dual condition in $\operatorname{Tan} J_e(p)_{\mathbb{F}_I} \cong \mathbb{T}/(I\mathbb{T} + A_e)$. The problems at I=2 arise in proving the isomorphism:

$$\operatorname{\mathsf{Cot}} J_e(p)_{\mathbb{Z}_{(I)}} \cong \operatorname{\mathsf{Cot}} J_0(p)_{\mathbb{Z}_{(I)}} \left[A_e \right] \subseteq \operatorname{\mathsf{Cot}} J_0(p)_{\mathbb{Z}_{(I)}} \cong S_2(\Gamma_0(p), \mathbb{Z}_{(I)})$$

Approach by Parent: Instead of looking at $f: X_0(p)^{(d)} \to J_e(p)$ construct an $f: X_0(p)^{(d)} \to J_0(p)$ which factors through $J_e(p)$.

Kamienny's criterion Parent's version translated to $X_0(p)$

Theorem

Let $l \neq p$ be a prime and $f: X_0(p)^{(d)} \to J_0(p)$ be the canonical map normalized by $f(\infty^{(d)}) = 0$ and $t \in \mathbb{T}$ then $t \circ f$ is a formal immersion at $\infty^{(d)}_{\mathbb{F}_l}$ if and only if $\overline{T_1 t}, \ldots, \overline{T_d t}$ are \mathbb{F}_l linearly independent in $\mathbb{T}/(l\mathbb{T})$.

Corollary

Take l=2 and q>2 prime, if the independence holds for $p>(2^{d/2}+1)^2$ and $t=a_q\cdot t_1$ with $t_1\in A_e^\perp$ then $p\notin S(d)$.

Proof of the corollary

Proof.

Need to show that for $s \in X_0(p)(K)$ with multiplicative reduction at 2 that $t \circ f(s^{(d)}) = 0$. Now $t_1 \circ f$ factors through $J_e(p)$ since $t_1 \in A_e^{\perp}$ hence $t_1 \circ f(s^{(d)})$ is torsion. $s_{\mathbb{F}_2}^{(d)} = \infty_{\mathbb{F}_2}^{(d)}$ so $t_1 \circ f(s^{(d)})$ is 2 torsion hence killed by a_q .

Some notation to formulate Kamienny for $X_1(p)$

This is why I explained everything for $X_0(p)$ first

Let $\pi: X_1(p) \to X_0(p)$ the canonical map. And $S:=\pi^{(-1)}(\infty)$ then as in the $X_0(p)$ case $s' \in X_1(p)(K)$ which reduce multiplicative give rise to an s s.t. $s_{\mathbb{F}_q} = \infty_{s,\mathbb{F}_q}$. Now take $\sigma_i \in S$ and $n_i \in \mathbb{N}$ s.t.

- $s_{\mathbb{F}_I}^{(d)} = \sum_{i=0}^m n_i \sigma_{i,\mathbb{F}_I}$
- σ_i pairwise distinct
- $n_m \ge n_{m-1} \ge ... \ge n_0 \ge 1$
- $\sum n_i = d$.

Also write $\sigma_0 = \langle j \rangle \sigma_j$ (ok since $\langle d \rangle$ act transitively on S) and $\sigma = \sum_{i=0}^m n_i \sigma_i$.

Kamienny's Criterion

Parent's original version

Theorem

Let $l \neq p$ be a prime and $f_{\sigma}: X_1(p)^{(d)} \to J_0(p)$ be the canonical map normalized by $f(\sigma) = 0$ and $t \in \mathbb{T}$ then $t \circ f$ is a formal immersion at $\sigma_{\mathbb{F}_l}$ if and only if

$$\overline{T_1\langle d_0\rangle t}, \overline{T_2\langle d_0\rangle t}, \dots, \overline{T_{n_0}\langle d_0\rangle t}, \overline{T_1\langle d_1\rangle t}, \dots, \overline{T_{n_1}\langle d_1\rangle t}, \dots, \overline{T_{n_1}\langle d_n\rangle t}, \dots, \overline{T_{n_m}\langle d_m\rangle t}$$

are \mathbb{F}_l linearly independent in $\mathbb{T}/(l\mathbb{T})$.

Corollary

Take l=2 and q>2, $p>(2^{d/2}+1)^2$ both prime. Take $t=a_q\cdot t_1$ with $t_1\in A_e^\perp$, suppose that for all partitions $\sum_{i=0}^m n_i=d$ and all $1< d_1,\ldots,d_m\leq \frac{p-1}{2}$ pairwise distinct that

$$\overline{T_1\langle 1\rangle t}, \ldots, \overline{T_{n_0}\langle 1\rangle t}, \overline{T_1\langle d_1\rangle t}, \ldots, \overline{T_{n_1}\langle d_1\rangle t}, \ldots, \overline{T_{n_m}\langle d_m\rangle t}, \ldots, \overline{T_{n_m}\langle d_m\rangle t}$$

are linearly independent then $p \notin S(d)$.

Comparison

Criterion for $X_1(p)$ is more powerful but is expensive to verify

- Advantage $X_1(p)$ over $X_0(p)$: Higher chance on success
- Disadvantage $X_1(p)$ over $X_0(p)$: Way slower
 - hecke matrices of size p^2 vs. $\frac{p}{12}$
 - 2 partition d = 1 + ... + 1 already gives $\binom{(p-3)/2}{d-1}$ dependency's to check instead of 1.

Luckily 2 can be worked around since t.f.a.e:

- $\langle 1 \rangle t, \langle d_1 \rangle t, \ldots \langle d_d \rangle t$ are linearly independent for all $1 < d_1, \ldots, d_m \leq \frac{p-1}{2}$ pairwise distinct.
- The smallest dependency in $\langle 1 \rangle t, \langle 2 \rangle t, \dots \langle \frac{p-1}{2} \rangle t$ is of weight > d

Similar things can be done for other partitions.

Result of testing the criterion

p=271 using $X_1(p)$ in sage takes about 12h and 21GB. I used $X_0(p)$ to show $S(d)\subseteq Primes(193)$ for d=5,6,7 After that I used $X_1(p)$ to show $S(d)\subseteq Primes((2^{d/2}+1)^2)$ The criterion is also satisfied for some $p<(2^{d/2}+1)^2$ so in these cases we only need to rule out good reduction.

Elliptic curves over \mathbb{F}_{2^d}

Let E/\mathbb{F}_{2^d} be an elliptic curve. Consider the two cases:

- $j(E) \neq 0$ then it can be shown that E has a point of order 2
- ② j(E) = 0 Then j is a twist of $y^2 + y = x^3$.

In case (1) we see that $\frac{1}{2}(2^{d/2}+1)^2$ bounds the torsion of prime order.

In case (2) count points on $y^2 + y = x^3$ over an extension of \mathbb{F}_{2^d} for which all twists are isomorphic.

This approach is still work in progress, I already ruled out p=23,37,43 for d=5 and p>37 except p=71 for d=6.

Summary

- The existence of torsion points on can be studied by looking what happens at reduction.
- Use kamienny's criterion to control multiplicative reduction.
 Hasse's bound and other smart things for good reduction.
 Additive reduction is never a problem.
- $S(5) \subseteq Primes(19) \cup \{29, 31, 41\}$ v.s. Primes(271) $S(6) \subseteq Primes(41) \cup \{71\}$ v.s. Primes(773) $S(7) \subseteq Primes(151)$ v.s. Primes(2281)
- Possible future work:
 - Construct elliptic curves for d = 5, 6, 7
 - Do more smart things for $p < (I^{d/2} + 1)^2$ for d = 5, 6, 7
 - Use the computer to test $d = 8, 9, 10, \dots$
 - Look if Oesterlé's proof can be translated to I = 2.

