next up previous
Next: Discriminants Up: Lecture 22: Binary Quadratic Previous: Introduction

Equivalence

Definition 2.1   The modular group $ \SL_2(\mathbb{Z})$ is the group of all $ 2\times 2$ integer matrices with determinant $ +1$.

If $ g=\left(
\begin{smallmatrix}p&q\\  r&s\end{smallmatrix}\right)\in\SL_2(\mathbb{Z})$ and $ f(x,y) = ax^2 + bxy + cy^2$ is a quadratic form, let

$\displaystyle f\vert _g (x,y)= f(px+qy, rx+sy) =
f\left(\left(
\begin{matrix}p&q\\  r&s
\end{matrix}\right)\vtwo{x}{y}\right),
$

where for simplicity we will sometimes write $ f\left(\vtwo{x}{y}\right)$ for $ f(x,y)$.

Proposition 2.2   The above formula defines a right action of the group $ \SL_2(\mathbb{Z})$ on the set of binary quadratic forms, in the sense that

$\displaystyle f\vert _{gh} = (f\vert _g)\vert _h.
$

Proof.

$\displaystyle f\vert _{gh}(x,y) = f\left(gh\vtwo{x}{y}\right)
= f\vert _g\left(h\left(\vtwo{x}{y}\right)\right)
= (f\vert _g)\vert _h(x,y).
$

$ \qedsymbol$

Proposition 2.3   Let $ g\in\SL_2(\mathbb{Z})$ and let $ f(x,y)$ be a binary quadratic form. The set of integers represented by $ f(x,y)$ is exactly the same as the set of integers represented by $ f\vert _g(x,y)$.

Proof. If $ f(x_0, y_0)=n$ then since $ g^{-1}\in\SL_2(\mathbb{Z})$, we have $ g^{-1}\vtwo{x_0}{y_0}\in\mathbb{Z}^2$, so

$\displaystyle f\vert _g\left(g^{-1}\vtwo{x_0}{y_0}\right) = f (x_0, y_0) = n.
$

Thus every integer represented by $ f$ is also represented by $ f\vert _g$. Conversely, if $ f\vert _g(x_0,y_0)=n$, then $ f\left(g\vtwo{x_0}{y_0}\right) = n$, so $ f$ represents $ n$. $ \qedsymbol$

Define an equivalence relation $ \sim$ on the set of all binary quadratic forms by declaring that $ f$ is equivalent to $ f'$ if there exists $ g\in\SL_2(\mathbb{Z})$ such that $ f\vert _g = f'$.

For simplicity, we will sometimes denote the quadratic form $ ax^2 + bxy+cy^2$ by $ (a,b,c)$. Then, for example, since $ g=\left(
\begin{smallmatrix}0&-1\\  1&\hfill 0\end{smallmatrix}\right)\in\SL_2(\mathbb{Z})$, we see that $ (a,b,c)\sim (c,-b,a)$, since if $ f(x,y) = ax^2 + bxy + cy^2$, then $ f(-y,x) = ay^2 - bxy + cx^2$.

Example 2.4   Consider the binary quadratic form

$\displaystyle f(x,y) = 458x^2 + 214xy + 25y^2.
$

Solving the representation problem for $ f$ might, at first glance, look hopeless. We find $ f(x,y)$ for a few values of $ x$ and $ y$:

$\displaystyle f(-1,-1)$ $\displaystyle =17\cdot 41$    
$\displaystyle f(-1,0)$ $\displaystyle =2\cdot 229$    
$\displaystyle f(0,-1)$ $\displaystyle =5^2$    
$\displaystyle f(1,1)$ $\displaystyle =269$    
$\displaystyle f(-1,2)$ $\displaystyle =2\cdot 5\cdot 13$    
$\displaystyle f(-1,3)$ $\displaystyle =41$    

Each number is a sum of two squares! Letting $ g=\left(
\begin{smallmatrix}\hfill4&-3\\  -17&13\end{smallmatrix}\right)$, we have

$\displaystyle f\vert _g =
458(4x-3y)^2 + 214(4x-3y)(-17x+13y)
+ 25(-17x+13y)^2 = \cdots = x^2 + y^2!!
$

By Proposition 2.3, $ f$ represents an integer $ n$ if and only if $ n$ is a sum of two squares.


next up previous
Next: Discriminants Up: Lecture 22: Binary Quadratic Previous: Introduction
William A Stein 2001-11-04